• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Algebra Linear] Planos perpendiculares

[Algebra Linear] Planos perpendiculares

Mensagempor Pedro123 » Qui Mai 23, 2013 16:41

Olá galera, estou com dúvida na seguinte questão, fiz a materia ja tem mais de 2 anos e nao lembro bem como resolver, consegui fazer o óbvio que é igualar o produto escalar dos vetores normais dos planos a zero, porém nao fui muito além disso. Aqui está a questão:

Determinar os valores de a e b de modo que os planos
PI1: ax+by+4z -1 =0
PI2: 3x-5y-2z+5 =0
sejam perperdiculares

Me parece ser algo bem simples, porém nao estou enxergando.

Grato pela atenção
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando

Re: [Algebra Linear] Planos perpendiculares

Mensagempor e8group » Dom Mai 26, 2013 14:04

Sim está certo , como p_1 \perp p_2  \implies  n_{p_1} \perp n_{p_2} \implies  n_{p_1} \cdot   n_{p_2} = 0 .Onde : n_{p_1} = (a,b,4) e n_{p_2} = (3,-5,-2) são ,respectivamente ,vetores ortogonais aos planos p_1 e p_2 . Através da equação 3a -5b -8 =0 0 ,obtemos a = \frac{8+5b}{3} isto nos faz pensar que b é um número arbitrário . Mas ,tomando-se arbitrariamente dois pontos que pertencem ao plano p_1 , poderemos construir um vetor ortogonal a n_{p_2} .Por exemplo , fazendo-se x=0,0 ; y=2,3 na equação no plano p_1 e obtemos que os pontos P_1 = (0,2, \frac{1-2b}{4}) , P_2 = (0,3,\frac{1-3b}{4}) \in p_1 . Assim , \overrightarrow{P_1P_2} = (0,1,\frac{-b}{4}) \parallel p_1 \implies   \overrightarrow{P_1P_2} \perp  n_{p_2} \implies  \overrightarrow{P_1P_2} \cdot   n_{p_2}  = 0  \implies  3\cdot 0 +(-5) \cdot 1 + (-2) \cdot (-b/4)  = 0 \implies  -5 +b/2 = 0 \implies  b = 10 .

Logo ,lembrando que a = \frac{8+5b}{3} ,temos que a = \frac{8 + 50}{3}  = \frac{58}{3} .


Verificando a resposta :

n_{p_1} \cdot   n_{p_2} = 0  \implies (58/3,10,4) \cdot (3,-5,-2) = 174/3 - 50 -8  = 0 . (OK!!)

Se não falhei em algum conceito é isso .

Justificativa em relação a escolha arbitrária dos pontos P_1, P_2 . Suponha que P_3, P_4 são pontos genéricos do plano p_1 . Assim , \overrightarrow{P_3P_4} \parallel   \overrightarrow{P_1P_2} \implies  \exists \gamma \in \mathbb{R} tal que \overrightarrow{P_3P_4} =  \gamma \overrightarrow{P_1P_2} .

Daí ,

\overrightarrow{P_3P_4}  \perp n_{p_2} \iff   ( \gamma \overrightarrow{P_1P_2}) \perp \vec{ n_{p_2}} ) \iff    ( \gamma \overrightarrow{P_1P_2}) \cdot    \vec{ n_{p_2}} =  0  \iff \gamma ( -5 +b/2 )  = 0 .

Como as equações são equivalentes é fácil verificar a unicidade da resposta .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Algebra Linear] Planos perpendiculares

Mensagempor Pedro123 » Seg Mai 27, 2013 14:36

Muito obrigado santhiago, até pensei em fazer um outro vetor, mas achei que haveria um jeito menos arbitrário de encontrar o mesmo e acabei me confundindo. Enfim, obrigado.
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?