• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de primeira e segunda ordem

Derivada de primeira e segunda ordem

Mensagempor Nina » Qui Nov 05, 2009 20:52

Ola.. estou fazendo um trabalho e ficquei com duvida neste problema p= \frac{{q}^{2} +3} {{(q+1)}{3} + {(q-1)}{3}}.
Então derivei em cima e em baixo e achei a segunda derivada como p=\frac{6}{12}.Gostaria de saber se esta certo o raciocínio e o resultado!
Obrigada
Nina
Nina
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Out 21, 2009 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Derivada de primeira e segunda ordem

Mensagempor marciommuniz » Sex Nov 06, 2009 13:02

Olá Nina... Derivar em baixo e em cima não é o certo para uma derivada de quocientes.
Siga essa fórmula padrão para derivadas de quocientes

Imagem
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}