• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provar Propriedade Arquimediana

Provar Propriedade Arquimediana

Mensagempor Jovani Souza » Sáb Mai 18, 2013 12:32

Provar Propriedade Arquimediana: Para qualquer real x existe n E N/n>x

Podemos provar por absurdo por exemplo:
Se para algum x E R tivéssemos n<x, para todo n E N, então x é uma cota superior de N.

Como podemos provar isso passo a passo?

Grato!
Jovani Souza
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Mai 18, 2013 12:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Provar Propriedade Arquimediana

Mensagempor e8group » Sáb Mai 18, 2013 16:52

Pensei da seguinte forma :

Se \exists x \in \mathbb{R} tal que \forall n \in \mathbb{N} tem-se x \geq n então \mathbb{N} é limitado superiormente e possui uma cota superior .Consideremosn a menor das cotas superiores .Como o número n-1 \in \mathbb{N} e n-1 < n implica que este número não é limite superior de \mathbb{N} .Assim , \exists n' \in \mathbb{N} tal que n' > n-1 o que implica n'+1 > n .Como n'+1 \in \mathbb{N} ,concluímos n não é majorante e também não pode ser a menor das cotas superiores de \mathbb{N} e isto é uma contradição ,uma vez que consideremos n como a menor das cotas superiores .Desta forma ,concluímos que \forall x \in \mathbb{R} sempre existirá algum número natural n > x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.