• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômios

Polinômios

Mensagempor DanielFerreira » Ter Set 22, 2009 14:10

No polinômio P(x) = x³ + mx² + m²x - 5, para que P(-1)=2. P(1) é preciso ter:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Polinômios

Mensagempor Daniel Gurgel » Sáb Out 31, 2009 14:23

Podemos fazer assim:

*Substituindo (x) por (-1) e igualando a 2. Fazendo as devidas simplificações temos a seguinte equação do segundo grau:

{m}^{2}-m+8=0
*
Resolvendo a equação no conjunto dos números complexos encontramos:

m'=\frac{1-i\sqrt[2]{31}}{2} e m"=\frac{1+i\sqrt[2]{31}}{2}

*Agora vamos substituir no polinômio, (x) por (1) e m pelos seus respectivos valores ou seja por m' e m".

*Para m'=\frac{1-i\sqrt[2]{31}}{2}, temos que P(1)=-44-4i\sqrt[2]{31}

*Para m"=\frac{1+i\sqrt[2]{31}}{2}, temos que P(1)=-44+4i\sqrt[2]{31}
Daniel Gurgel
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Ago 22, 2009 18:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: Polinômios

Mensagempor Cleyson007 » Sáb Out 31, 2009 16:20

Olá, boa tarde!

Daniel Gurgel, estou resolvendo e não estou encontrando o mesmo resultado. Veja só:

O problema impõe a seguinte condição: \frac{P(-1)}{P(1)}=2

Logo, \frac{-1+m-{m}^{2}-5}{1+m+{m}^{2}-5}=2

Resolvendo, encontra-se a seguinte equação do 2º grau: {-3m}^{2}-m+2=0

Os valores são: {m}_{1}=-1

{m}_{2}=\frac{2}{3}

Se você substituir o valor de m=-1 no polinômio P(x)={x}^{3}+m{x}^{2}+{m}^{2}x-5, encontrará a seguinte equação do 3º grau: {x}^{3}-{x}^{2}+x-5.

Calculando o valor de -1 em \frac{P(-1)}{P(1)}, é válida a igualdade.

Logo é preciso ter m=-1.

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Polinômios

Mensagempor Daniel Gurgel » Qui Nov 05, 2009 12:57

Olá!
Desculpe-me pelo encomodo.
Penssei que a condição do problema era P(-1)=2
Até mais.
Daniel Gurgel
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Ago 22, 2009 18:04
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}