• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria

geometria

Mensagempor zenildo » Ter Mai 07, 2013 17:35

Se o perimetro de um triangulo inscrito num circulo medir 20xcm e a soma dos senos de seus ângulos internos for igual a x, então a área do círculo, em cm², será igual a:

a)50pi
b)75pi
c)100pi
d)125pi
e)150pi
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: geometria

Mensagempor brunnkpol » Ter Mai 07, 2013 21:44

2P=20x
sen\,a + sen\,b+sen\,c=x

--------------------------------------------------------
Pela lei dos senos, temos:
\frac{a}{sen\,a}=2R

portanto

\frac{a}{2R}=sen\,a

fazendo o mesmo com os três lados do triângulo:

\frac{b}{2R}=sen\,b, \frac{c}{2R}=sen\,c

Somando as três expressões:
\frac{a}{2R}+\frac{b}{2R}+\frac{c}{2R}=x

\frac{a+b+c}{2R}=x

tendo 2P=a+b+c=20x

substitui-se:
\frac{20x}{2R}=x

\frac{10x}{R}=x

Rx=10x

R=10cm

Área do círculo é A=\pi{R}^{2}

portanto
A=\pi{10}^{2}

A=100\pi {cm}^{2} alternativa (c)
brunnkpol
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Mai 07, 2013 16:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}