• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor samysoares » Sáb Mai 04, 2013 23:06

\int_{}^{}\frac{t²-2t}{t²+4}dt
Por favor, me ajudem. Já tentei o método da substituição e não deu certo!
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral

Mensagempor e8group » Sáb Mai 04, 2013 23:36

Note que ,

\frac{t^2-2t}{t^2 +4}  = \frac{t^2-2t + [4+(-4)]}{t^2 +4}  = \frac{t^2+4-2t-4}{t^2 +4} = \frac{t^2+4}{t^2 +4} - \frac{2t}{t^2 +4} -\frac{4}{t^2 +4}  = 1 - \frac{2t}{t^2 +4}  - \frac{1}{\left( \dfrac{t}{2}\right )^2 + 1} .

Agora o integrando é mais simples .Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral

Mensagempor samysoares » Dom Mai 05, 2013 12:31

Obrigada, eu consegui!
Mas se eu fizesse divisão de polinômios daria o mesmo resultado? já qe o grau do numerado é o mesmo do denominador.
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Integral

Mensagempor e8group » Dom Mai 05, 2013 13:34

samysoares escreveu:Obrigada, eu consegui!
Mas se eu fizesse divisão de polinômios ...


De nada .Neste caso ,após a primeira etapa de divisão de polinômios obteríamos que o grau do resto (que é um polinômio ) seria estritamente menor que o do divisor (que é um polinômio) .Experimente fazer esta divisão .

samysoares escreveu:... daria o mesmo resultado? já qe o grau do numerado é o mesmo do denominador.


Apesar de eles possuírem o mesmo grau , tal resultado não seria equivalente .Sempre após a divisão de um polinômio p_1(x) por p_2(x) em que gr(p_2) \leq  gr(p_1) obtemos algo do gênero d(x)q(x)  +r(x) como resposta . Onde : d,q,r são polinômios .

Se você observar ,após aquele "artifício algébrico " que foi utilizado no integrando, a resposta é da forma p_1(t) + p_2(t)/p_3(t) , em que p_2,p_3 são polinômios tais que p_2(t) = -2t-4 e p_3(t) = t^2+4 , e claro p_1(t)  = 1 uma função constante . Como podemos ver a resposta não é da forma d(x)q(x)  +r(x) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}