• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Problemas de Equaçoes]

[Problemas de Equaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 15:01

Um fazendeiro quer construir um curral rectangular. Para cercá-lo, dispoe de 400 m de arame e de uma parede já existente. Sabendo que a cerca de arame terá 4 voltas, determine as dimensoes desse curral para que a sua área seja máxima. Fonte: Questao foi colocado por meu Professor(Adolfo Magode). Entao, neste exercicio temos que ter em conta duas condiçoes o perimetro do rectangulo e a área do rectangulo, eu calculei usando o perimetro= 4x+4y=400, pois o problema diz que o arame( a parte externa do curral) dá 4 voltas, sabendo que o perimetro de um rectangulo é dado por: P= 2x+2y, no final obtive 50m por 200m, mas o gabarito deste exercicio diz que é 25m por 50m. *-)
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando

Re: [Problemas de Equaçoes]

Mensagempor young_jedi » Sáb Mai 04, 2013 18:44

o enunciado diz que já existe uma parede que ira formar o retângulo
portanto você terá que cercar dois lados x e um lado y portanto você tem que

4(2x+y)=400

tente concluir e comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Problemas de Equaçoes]

Mensagempor R0nny » Sáb Mai 04, 2013 19:51

Percebi, ao resolver eu havia posto P= 2x+y, porque ja existia uma parede, e nao tomei em conta o 4, sim ja resolvi, teremos que A=x(100-2x)= -2x²+100x, se querem as dimensoes querem o valor de comprimento(x) e a largura(y), entao se queremos o comprimento(x-xv) Xv= -b/2a, entao teremoss x=100/4=25, apartir daí ja podemos calcular o valor da largura(y), apos termos feito no perimetro inscrito, isto é: 4(2x+y)=400; 8x+4y, y=400-8x/4= 100-2x, entao partir daí temos que y=100-2x, entao: 100-2.25= 50; Conclusao: o lado oposto á parede medirá 50m e os seus adjacentes mediram cada um 25m. Jedi eu te agradeço bastante...!!! Muito obrigadoo, obrigado mesmo! Óptimo dia! Mais uma vez Obrigado :) :y:
R0nny
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Abr 28, 2013 10:53
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Estudante
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.