por arthurvct » Sex Mai 03, 2013 20:16
Calcule os coeficientes angulares das retas tangentes às curvas f(x)=

e g(x)=

, no ponto de interseção dos gráficos destas curvas. Qual o ângulo entre estas retas?
-
arthurvct
-
por arthurvct » Sex Mai 03, 2013 20:17
alguém pode me dar uma luz?
-
arthurvct
-
por arthurvct » Sáb Mai 04, 2013 10:45
ninguém??
-
arthurvct
-
por marinalcd » Sáb Mai 04, 2013 16:11
arthurvct escreveu:Calcule os coeficientes angulares das retas tangentes às curvas f(x)=

e g(x)=

, no ponto de interseção dos gráficos destas curvas. Qual o ângulo entre estas retas?
1ª: as derivadas das curvas determinam os coeficientes angulares das retas tangentes, então é só derivar e depois calcular no ponto da interseção (substituir);
2ª: Para descobrir o ângulo, basta você calcular o arcotangente do coeficiente que você encontrar.
As curvas são bem simples e as derivadas também. Tente fazer!
-
marinalcd
- Colaborador Voluntário

-
- Mensagens: 143
- Registrado em: Sex Abr 27, 2012 21:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por arthurvct » Qui Mai 16, 2013 19:23
Obrigado! Mas tenho outra dúvida, eu igualei f(x) a g(x) por se tratar do ponto de interseção, achei que x=1, dai eu achei f'(1) e g'(1), deu -1 e 2, mas e agora? como calcular a arcotangente disso? me explica a partir daqui, por favor!! Abraço
-
arthurvct
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema Envolvendo Limites e Derivadas Nível Hard
por landerson » Sex Abr 24, 2015 10:32
- 0 Respostas
- 1352 Exibições
- Última mensagem por landerson

Sex Abr 24, 2015 10:32
Cálculo: Limites, Derivadas e Integrais
-
- Questão envolvendo derivadas:
por arthurvct » Qui Mai 16, 2013 17:15
- 2 Respostas
- 1590 Exibições
- Última mensagem por arthurvct

Qui Mai 16, 2013 19:10
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas - Questão envolvendo prova e angulo
por RuuKaasu » Sáb Dez 26, 2015 23:57
- 0 Respostas
- 1727 Exibições
- Última mensagem por RuuKaasu

Sáb Dez 26, 2015 23:57
Cálculo: Limites, Derivadas e Integrais
-
- Questão envolvendo Derivadas e área! Prova no sábado!!
por arthurvct » Qui Jun 13, 2013 15:21
- 1 Respostas
- 1629 Exibições
- Última mensagem por e8group

Sex Jun 14, 2013 00:49
Cálculo: Limites, Derivadas e Integrais
-
- Problema envolvendo função
por marianacarvalhops » Sáb Mai 02, 2009 17:46
- 1 Respostas
- 4424 Exibições
- Última mensagem por Marcampucio

Sáb Mai 02, 2009 18:27
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.