• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas tangentes ao gráfico

Retas tangentes ao gráfico

Mensagempor Marcos_Mecatronica » Sáb Abr 27, 2013 19:58

Mostre que existem exatamente duas retas tangentes ao gráfico de y=(x+1)^3 que passam pela origem.Dê as equações dessas retas.
Marcos_Mecatronica
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mar 19, 2013 20:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Retas tangentes ao gráfico

Mensagempor young_jedi » Dom Abr 28, 2013 12:16

se são equações que passam pela origem então elas são

y=ax

a é a inclinação da reta sendo esta tangente a curva então ela é igual a derivada da equação no ponto

\frac{dy}{dx}=3(x+1)^2

então a equação sera

y=3(x_1+1)^2x

mais como no ponto de tangencia a reta e a cruva se interceptam então

(x+1)^3=3(x+1)^2x

x^3+3x^2+3x+1=3x^3+6x^2+3x

2x^3+3x^2-1=0

podemos ver que -1 é uma das raizes então temos

(x+1)(2x^2+x-1)=0

as raizes do polinomio de segundo grau são -1 e 1/2 então

2(x+1)^2(x-\frac{1}{2})=0

portanto os dois pontos de tangencia onde a reta tangente passa pela origem são em x=-1 e x=1/2 portanto nos temos que

a=3(-1+1)^2

a=0

portanto uma das retas tangente é

y=0

ou

a=3(\frac{1}{2}+1)^2

a=\frac{27}{4}

então a outra reta é

y=\frac{27}{4}x
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.