• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITE DE SEQUÊNCIA - ME AJUDEM!!!-

LIMITE DE SEQUÊNCIA - ME AJUDEM!!!-

Mensagempor shallon » Qua Out 28, 2009 23:47

Sobre convergência: Os termos da sequência
xn = 1/n :1,1/2,1/3,1/4,1/5,1/6 se aproxima cada vez mais (converge) para a=1. Escrevemos então lim[n->infinito]1/n=0.
Também, sequência yn = n/(n+1) = 1

.
QUESTÃO 01. Dê exemplo (justificando sua resposta) de uma sequência xn,:
a) Monótona decrescente e ilimitada;
b) Limitada, mas não monótona;
c) Ilimitada, mas não monótona;
d) Não monótona, e convergente para a=0;
e) Monótona decrescente, e convergente para a=2;
f) Monótona crescente, e convergente para a=3
DESDE JÁ AGRADEÇO. :rose: :y:
shallon
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Out 22, 2009 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.