• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo:integral

Calculo:integral

Mensagempor Victor Gabriel » Sex Abr 26, 2013 20:51

Olá pessoal boa noite, tem algum que pode mim ajuda nesta questão, olha com eu a fiz.
1º Calcule \int_{}^{}\frac{senx}{x}dx.

utilizei a tecnica da integração por parte:

\int_{}^{}udv=uv-\int_{}^{}vdu

fazendo:

\int_{}^{}\frac{1}{x}.senx dx

u=\frac{1}{x}\Rightarrow du=lnx e dv=senx dx \Rightarrow v=\int_{}^{}senx dx \Rightarrow v=-cosx logo faço:


\int_{}^{}\frac{1}{x}.senxdx=\frac{1}{x}.(-cosx)-\int_{}^{}-cosxdx=\frac{-cosx}{x} +senx + c

estou certo ou não?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: Calculo:integral

Mensagempor e8group » Sex Abr 26, 2013 21:41

Acredito que não há funções elementares que derivando-se chega no integrando .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Calculo:integral

Mensagempor Victor Gabriel » Sex Abr 26, 2013 22:22

Santiago então como faço?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: Calculo:integral

Mensagempor e8group » Sáb Abr 27, 2013 01:22

Pelo wikipedia ,

\int sin(x)/x  dx = Si(x) . Veja : http://en.wikipedia.org/wiki/Trigonometric_integral .

Acredito que uma forma alternativa seria representar a função seno por série de potência .Veja : http://en.wikipedia.org/wiki/Power_series

Desta forma , \int \frac{sin(x)}{x}dx = \int \sum_{k=0}^{\infty}  \frac{(-1)^k x^{2k}}{(2k+1)!}  dx .Pela linearidade da integral , \int \sum_{k=0}^{\infty}  \frac{(-1)^k x^{2k}}{(2k+1)!}  dx  =  \sum_{k=0}^{\infty}  \frac{(-1)^k }{(2k+1)!}  \int x^{2k} dx   =    \sum_{k=0}^{\infty}  \frac{(-1)^k x^{2k+1} }{(2k+1)(2k+1)!}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.