• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração] Apics

[Fatoração] Apics

Mensagempor chronoss » Qua Abr 24, 2013 16:19

Dados os números x , y , z tais que : x + y + z = 1 , x² + y² + x² = 2 , x³ + y³ + z³ = 3 . Calcule : x? + y? + z?.


Resposta : 25/6

Obs: Tentei diversas vezes sem sucesso
chronoss
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Qui Abr 18, 2013 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Fatoração] Apics

Mensagempor young_jedi » Sex Abr 26, 2013 19:37

(x+y+z)^2=1

x^2+y^2+z^2+2xy+2xz+2zy=1

substituindo a segunda equação

2+2(xy+xz+yz)=1

xy+xz+yz=-1/2

temos ainda que

(x+y+z)^3=1

x^3+y^3+z^3+3x^2y+3x^2z+3y^2x+3y^2z+3z^2x+3z^2y+6xyz=1

3+3(x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz)=1

x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz=\frac{-2}{3}

(x+y+z)(x^2+y^2+z^2)-x^3-y^3-z^3+2xyz=\frac{-2}{3}

1.2-3+2xyz=-\frac{2}{3}

xyz=\frac{1}{6}

portanto temos que

(xy+xz+yz)(x^2+y^2+z^2)=-\frac{1}{2}.2

x^3y+x^3z+y^3x+y^3z+z^3x+z^3y+x^2yz+y^2xz+z^2xy=-1

x^3y+x^3z+y^3x+y^3z+z^3x+z^3y+(xyz)(x+y+z)=-1

x^3y+x^3z+y^3x+y^3z+z^3x+z^3y+\frac{1}{6}.1=-1

x^3y+x^3z+y^3x+y^3z+z^3x+z^3y=-\frac{7}{6}

mais nos sabemos que

(x+y+z)(x^3+y^3+z^3)=1.3

x^4+y^4+z^4+x^3y+x^3z+y^3x+y^3z+z^3x+z^3y=3

substituindo a outra relação encontrada temos

x^4+y^4+z^4-\frac{7}{6}=3

x^4+y^4+z^4=\frac{7}{6}+3


x^4+y^4+z^4=\frac{25}{6}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59