• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite ao Infinito] Duvida simples

[Limite ao Infinito] Duvida simples

Mensagempor EduardoM » Ter Abr 23, 2013 17:25

f\left( x \right) \cfrac { x²+16 }{ 8-x² }

a) x -> -\infty
b) x -> +\infty

Minha duvida é se na letra "a" vai ficar \cfrac { \infty  }{ -\infty  } =1 ou eu anulo os x e fica 16/8 =2, e na letra b o mesmo caso.
EduardoM
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Abr 23, 2013 17:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [Limite ao Infinito] Duvida simples

Mensagempor young_jedi » Qui Abr 25, 2013 22:00

na verdade voce tem

\lim_{x\to\infty}\frac{x^2-16}{8-x^2}

\lim_{x\to\infty}\frac{x^2}{x^2}\left(\frac{1-\frac{16}{x^2}}{\frac{8}{x^2}-1}\right)

\lim_{x\to\infty}\frac{1-\frac{16}{x^2}}{\frac{8}{x^2}-1}=\frac{1}{-1}=-1

proceda de forma semelhante para o outro limite e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite ao Infinito] Duvida simples

Mensagempor EduardoM » Sex Abr 26, 2013 19:52

young_jedi escreveu:na verdade voce tem

\lim_{x\to\infty}\frac{x^2-16}{8-x^2}

\lim_{x\to\infty}\frac{x^2}{x^2}\left(\frac{1-\frac{16}{x^2}}{\frac{8}{x^2}-1}\right)

\lim_{x\to\infty}\frac{1-\frac{16}{x^2}}{\frac{8}{x^2}-1}=\frac{1}{-1}=-1

proceda de forma semelhante para o outro limite e comente as duvidas


Beleza cara, muito brigadão ;)
EduardoM
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Abr 23, 2013 17:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}