• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relações trigonométricas

Relações trigonométricas

Mensagempor Jhennyfer » Qui Abr 25, 2013 13:51

oi, preciso de uma mãozinha...

A expressão mais simples para 1+\frac{1}{cos²x.cossec²x}-sec²x é:

iniciei resolvendo assim, inverso de cosseno é secante, e inverso de cossecante é seno, portanto:

1+sec²x.sen²x-sec²x

Agora não consigo resolver a parte da multiplicação sec²x.sen²x, se é que está certo!
esse  não sei pq está aparecendo na formula, se isto estiver errado desconsidere. obg ;)
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relações trigonométricas

Mensagempor e8group » Qui Abr 25, 2013 15:32

Você pensou corretamente sobre a questão .Entretanto ,note que 1 + sec^2(x)sin^2(x) = sec^2(x) (Por quê ?) .Assim ,

1 + sec^2(x)sin^2(x) - sec^2(x)  =  0 .

Observações :
i)
Lembrando que cos^2(x) + sin^2(x) = 1 ( identidade trigonométrica fundamental)

Pergunta :

O que acontece se dividirmos cada lado da igualdade por cos^2(x) ou se multiplicarmos ambos lados da igualdade por sec^2(x) ?

ii)

Para digitar expressões do tipo a² + b² em \LaTeX o correto é digitar a^2 +b^2 entre .

Compare os resultados :

a² + b² produz a² + b² em \LaTeX

a^2 +b^2 produz a^2 +b^2 em \LaTeX
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relações trigonométricas

Mensagempor Jhennyfer » Qui Abr 25, 2013 16:07

eu entendi, mas não to conseguindo terminar a questão =/
a resposta é 0

o que eu faço depois de

1+sec²x.sen²x-sec²x=0

?????????
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relações trigonométricas

Mensagempor e8group » Qui Abr 25, 2013 16:30

O que deverá fazer é responde a pergunta que fiz na observação ,isto é , \frac{sin^2(x) + cos^2(x)}{cos^2(x)} = \frac{1}{cos^2(x)} que é equivalente a sec^2(x) (sin^2(x) + cos^2(x)) =  1 + sec^2(x)sin^2(x) = 1 + tan^2(x)= sec^2(x) . Daí ,
1 + sec^2(x)sin^2(x)  - sec^2(x) = 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.