• Anúncio Global
    Respostas
    Exibições
    Última mensagem

riângulos ABC e DEF são congruentes

riângulos ABC e DEF são congruentes

Mensagempor Ana Maria da Silva » Qua Abr 17, 2013 15:42

Se os triângulos ABC e DEF são congruentes com a = 7,0, b = x/2, c = 5,5, d = y/3, e = 8,7 e f = z, de acordo com a figura abaixo, calcule x + y + z. Não consigo colocar as figuras.
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: riângulos ABC e DEF são congruentes

Mensagempor e8group » Qua Abr 17, 2013 17:02

Por definição de congruência de triângulos ,veja : http://www.professores.uff.br/dirceuesu/GBaula2.pdf

Temos que

\triangle{ABC} \cong \triangle{DEG}  \iff

\begin{cases} AB \equiv DE \\ BC\equiv EF \\ CA \equiv FD \end{cases}  \text{e}   \begin{cases} \hat{A} = \hat{D} \\ \hat{B} = \hat{E} \\ \hat{C} = \hat{F} \end{cases} \right )

Como não há figura anexada ,imagino que :

AB = a = 7 , BC =b= x/2 , CA = c = 5,5 , DE = d = y/3 , EF = e = 8
,7 e FD = f = z . Caso as medidas estão relacionadas corretamente , vamos ter que

x +y +z = 2 BC + 3 DE + FD = 2 EF + 3AB + CA = 2 \cdot 8,7 + 3 \cdot 7 + 5,5 = 43,9 .

Observação: Ao invés de triângulo DEG é DEF .Troquei a letra F por G simplesmente pelo LaTeX apresentar o seguinte problema ,o código \triangle{DEF} produz [Unparseable or potentially dangerous latex formula. Error 2 ] diferente de \triangle{DEG} = \triangle{DEG}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.