• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potência com incógnita

Potência com incógnita

Mensagempor Lana Brasil » Ter Abr 09, 2013 16:45

{(-1)}^{2n}+{(-1)}^{2n+1}-{(-1)}^{2n+2}

Qual a forma mais fácil de resolver, por favor? Não consegui.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potência com incógnita

Mensagempor e8group » Ter Abr 09, 2013 20:00

Temos :

(-1)^{2n} + (-1)^{2n+1} - (-1)^{2n+2} = (-1)^{2n} + (-1)^{2n} \cdot (-1)^1 - (-1)^{2n} \cdot (-1)^{2}

Ou ainda , (-1)^{2n} - (-1)^{2n}  - ((-1)^{2n}) .

Observações :

Para qualquer que seja n real , (-1)^{2n} - (-1)^{2n} = 0 ;além disto ,caso n seja inteiro temos que 2n é par , logo (-1)^{2n} = 1 para todo n inteiro .

Portanto ,

(-1)^{2n} + (-1)^{2n+1} - (-1)^{2n+2} = \begin{cases}  - 1  ; n \in \mathbb{Z} \\ (-1)^{2n} ; n \notin \mathbb{Z} \end{cases} .

Cabe a analisar quem é "n" ,dependendo de quem o for ,não representará um número real , tome n = 1/4 por exemplo .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potência com incógnita

Mensagempor e8group » Ter Abr 09, 2013 20:01

Na verdade ,

(-1)^{2n} + (-1)^{2n+1} - (-1)^{2n+2} = \begin{cases}  - 1  ; n \in \mathbb{Z} \\ -(-1)^{2n} ; n \notin \mathbb{Z} \end{cases}
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potência com incógnita

Mensagempor Lana Brasil » Ter Abr 09, 2013 20:22

santhiago escreveu:Temos :

(-1)^{2n} + (-1)^{2n+1} - (-1)^{2n+2} = (-1)^{2n} + (-1)^{2n} \cdot (-1)^1 - (-1)^{2n} \cdot (-1)^{2}

Ou ainda , (-1)^{2n} - (-1)^{2n}  - ((-1)^{2n}) .

Observações :

Para qualquer que seja n real , (-1)^{2n} - (-1)^{2n} = 0 ;além disto ,caso n seja inteiro temos que 2n é par , logo (-1)^{2n} = 1 para todo n inteiro .

Portanto ,

(-1)^{2n} + (-1)^{2n+1} - (-1)^{2n+2} = \begin{cases}  - 1  ; n \in \mathbb{Z} \\ (-1)^{2n} ; n \notin \mathbb{Z} \end{cases} .

Cabe a analisar quem é "n" ,dependendo de quem o for ,não representará um número real , tome n = 1/4 por exemplo .


Muito obrigada pela ajuda.
Lana Brasil
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Dom Abr 07, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}