• Anúncio Global
    Respostas
    Exibições
    Última mensagem

vetor ortonormal positiva

vetor ortonormal positiva

Mensagempor Ana Maria da Silva » Seg Abr 08, 2013 15:46

Sabendo que \{\vec i,\,\vec j,\,\vec k\} forma uma base ortonormal positiva do R^3 e que \vec a=2\vec i+2\vec j+2\vec k e \vec b=3\vec i+2\vec j +3\vec k , podemos afirmar que ||\vec a\times \vec b||^2 vale:
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: vetor ortonormal positiva

Mensagempor e8group » Seg Abr 08, 2013 16:15

Note que ||\vec a\times \vec b||^2 = ||\vec a||^2||\vec b||^2sin^2\theta = ||\vec a||^2||\vec b||^2(1-cos^2 \theta) = ||\vec a||^2||\vec b||^2 - (\vec a \cdot \vec b)^2 ,onde \theta = ang(\vec a ,\vec b) .

Como \vec a=2\vec i+2\vec j+2\vec k = (2,2,2) e \vec b=3\vec i+2\vec j +3\vec k = (3,2,3) ,então ||\vec a|| = \sqrt{2^2 + 2^2 + 2^2} = 2\sqrt{3}  , ||\vec b|| = \sqrt{3^2 + 3^2 + 2^2} = \sqrt{22} e \vec a \cdot \vec b = (2,2,2) \cdot (3,2,3) = 2 \cdot 3 + 2\cdot 2 + 2\cdot 3 = 16 e portanto ,

||\vec a\times \vec b||^2 = ||\vec a||^2||\vec b||^2 - (\vec a \cdot \vec b)^2  \hdots complete você .

Tente concluir
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)