• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função implícita]mera coincidência no resultado?

[Função implícita]mera coincidência no resultado?

Mensagempor marcosmuscul » Qua Abr 03, 2013 20:30

Imagem

1 + {tan}^{2}\left( x+y \right) - {cos}^{2}\left( x+y \right) - \frac{3}{2} = 0
-\frac{1}{2} + cos\left(2\left(x+y \right) \right) = 0
\Leftrightarrow \left(2\left(x+y \right) \right) = \frac{\pi}{3} \Rightarrow y = \frac{\pi}{6} - x

então a derivada dá -1 para \nabla x \in \Re

o estranho é que eu não usei o \frac{\pi}{4} em nenhum local.

O resultado que achei foi mera coincidência, não foi?
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Função implícita]mera coincidência no resultado?

Mensagempor Russman » Qua Abr 03, 2013 22:25

Toma x+y = z . Assim

sec^2(z) - cos^2(z) = 3/2
\frac{1}{cos^2(z)} - cos^2(z) = 3/2
1 - cos^4(z) - (3/2)cos^2(z) = 0

Fazendo cos^2(z) = r, temos 1- r^2 - (3/2)r = 0 de onde obtemos r = 1/2 e r=-2.
Assim, a solução real possível é

cos(z) = \sqrt{2}/2

e portanto , z = \frac{\pi }{4}+ 2n\pi.

Agora, como x + f(x) = z, temos

f(x) = - x +  \frac{\pi }{4}+ 2n\pi

o que nos dá f'(x) = -1 para todo x.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.