• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Teoria dos números]Prove que ... não é um quadrado perfeito

[Teoria dos números]Prove que ... não é um quadrado perfeito

Mensagempor guisaulo » Sáb Mar 30, 2013 18:10

Prove que 2 * 10^5^0^0 + 15 ou 2 * 10^5^0^0 + 16 não é um quadrado perfeito. Sua prova e construtiva ou não construtiva?

Sei que quadrado perfeito é um número inteiro não negativo que pode ser expresso como o quadrado de um outro número inteiro. Ex: 1, 4, 9...
Porém, não consigo montar uma estrategia para provar essa sentença...
guisaulo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Nov 27, 2012 21:14
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: [Teoria dos números]Prove que ... não é um quadrado perf

Mensagempor e8group » Sáb Mar 30, 2013 21:17

Bom meu conhecimento em teoria dos números é nulo ,mas vamos tentar . Suponha que exista algum \gamma natural tal que 2 \cdot 10^{500} + 15 =  \gamma ^2 .Sabemos que10^{500} = 2^{500} \cdot 5^{500} e que 15 = 5 \cdot 3. Assim , 2 \cdot 10^{500} + 15 =  \gamma ^2 \iff  2^{501} \cdot 5^{500} + 3 \cdot 5 = \gamma ^2 e isto equivale a dizer que 5\cdot (2^{501}\cdot 5^{499} + 3) = \gamma^2 e ainda 5 \cdot (2^{2} \cdot 10^{499} + 3) = \gamma^2 .Ao extrairmos a raiz quadrada de ambos membros deveríamos obter algum \gamma natural ,mas isto não acontece ,pois ,

\gamma = \sqrt{5} \cdot \sqrt{2^{4} \cdot 5^{499} + 3} .De \sqrt{5} ser irracional e por 2^{4} \cdot 5^{499} + 3 não ser divísel por 5 ,resulta que \gamma não é natural que contradiz a hipótese ,sendo assim ,2 \cdot 10^{500} + 15 não é um quadrado perfeito .Se a resolução estiver correta , o outro caso é análogo ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Teoria dos números]Prove que ... não é um quadrado perf

Mensagempor Vanderlucio » Qua Mai 22, 2013 21:16

Todo número é da forma 2n ou 2n+1. Logo, todo quadrado é da forma 4n^2=4(n^2 ou 4n^2+4n+1=4(n^2+n)+1, ou seja, só pode deixar resto 0 ou resto 2 na divisão por 4. Mas o número 2\cdot10^{500}+15=4(5\cdot10^{499}+3)+3, evidentemente, deixa resto 3 quando dividido por 4 e, portanto não pode ser um quadrado perfeito.
Vanderlucio
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 22, 2013 19:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino médio
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59