• Anúncio Global
    Respostas
    Exibições
    Última mensagem

vetores

vetores

Mensagempor andre barros » Sáb Mar 30, 2013 15:26

dados os vetores u= ( 1,a,-2a-1) , v= (a,a-1,1) e w= (a, -1,1), determine a de modo que : u.v=(u+v).w
resoluçao:
u.v= (u+v).w
u.v=((1,a,-2a-1)+(a,a-1,1)).w
u.v=(1a,2a-1,-2a).(a,-1,1)
u.v=(1a²,-2a-1,-2a)
(1,a,-2a-1).(a,a-1,1)=(1a²,-2a-1,-2a)
(a,a²-1,-2a-1)=(1a²,-2a-1,-2a)
a partir daí nao sei o que fazer....
andre barros
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 30, 2013 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. mecânica
Andamento: cursando

Re: vetores

Mensagempor e8group » Sáb Mar 30, 2013 15:52

Pelas propriedades do produto escalar ,temos que :


U\cdot V=(U+V)\cdot W \iff  U\cdot V - U\cdot W - V\cdot W = 0 .

Foi dado que : U= ( 1,a,-2a-1) , V= (a,a-1,1) , W= (a, -1,1) .

Temos então ,

(i) U\cdot V =  a  + a(a-1) -2a - 1 = a^2 -2a - 1

(ii) U\cdot W =  a -a  -2a - 1 = -2a - 1

(iii) V\cdot W =  a^2 -a + 1 + 1 = a^2 -a + 2

Por (i),(ii) e (iii) , U\cdot V - U\cdot W - V\cdot W = 0 \iff ( a^2 -2a - 1) -(-2a - 1)  - (a^2 -a + 2 ) =  0 .

Tente concluir ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: vetores

Mensagempor andre barros » Sáb Mar 30, 2013 16:27

santhiago escreveu:Pelas propriedades do produto escalar ,temos que :


U\cdot V=(U+V)\cdot W \iff  U\cdot V - U\cdot W - V\cdot W = 0 .

Foi dado que : U= ( 1,a,-2a-1) , V= (a,a-1,1) , W= (a, -1,1) .

Temos então ,

(i) U\cdot V =  a  + a(a-1) -2a - 1 = a^2 -2a - 1

(ii) U\cdot W =  a -a  -2a - 1 = -2a - 1

(iii) V\cdot W =  a^2 -a + 1 + 1 = a^2 -a + 2

Por (i),(ii) e (iii) , U\cdot V - U\cdot W - V\cdot W = 0 \iff ( a^2 -2a - 1) -(-2a - 1)  - (a^2 -a + 2 ) =  0 .

Tente concluir ...

-a+2=0 a=2
seria isso?
andre barros
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 30, 2013 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. mecânica
Andamento: cursando

Re: vetores

Mensagempor e8group » Sáb Mar 30, 2013 16:36

Sim .Para conferir , basta verificar que se a = 2 a condição U\cdot V=(U+V)\cdot W é satisfeita .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: vetores

Mensagempor andre barros » Sáb Mar 30, 2013 16:50

santhiago escreveu:Sim .Para conferir , basta verificar que se a = 2 a condição U\cdot V=(U+V)\cdot W é satisfeita .


valeu santhiago, ajudou muito!
andre barros
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 30, 2013 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. mecânica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: