• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Encontrar domínio e imagem]

[Encontrar domínio e imagem]

Mensagempor Larry Crowne » Sex Mar 29, 2013 21:46

Por favor, como encontro domínio e imagem da função:G(t)=\frac{2}{{t}^{2}-16}
Larry Crowne
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Mai 21, 2012 16:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [Encontrar domínio e imagem]

Mensagempor nakagumahissao » Sáb Mar 30, 2013 01:48

Dom(G) = (x\in\Re:t\neq \pm 4)

Pois o denominador da função não poderá ser igual a zero (indeterminação):

t^{2} - 16 \neq 0 \Leftrightarrow t^{2} \neq 16 \Leftrightarrow t\neq \pm 4
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}