• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequações - funções

Inequações - funções

Mensagempor lilianers » Sex Mar 29, 2013 21:01

Como resolver a inequação (9/16) x-3 ? (36/27)x+2 e construa o gráfico das funções y(x) = (9/16) x-3 e g(x) = (36/27) x+2 , identificando no gráfico o ponto em que ambas têm o mesmo valor.

Obs.: x-3 e x-2 são potencias.

Grata

Liliane
lilianers
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mar 29, 2013 20:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Biológicas
Andamento: cursando

Re: Inequações - funções

Mensagempor e8group » Sáb Mar 30, 2013 13:55

A desigualdade g(x) > y(x) sempre será verdadeira para todo x > 0 .Pois g é estritamente crescente ao contrário da função y (que vc chamou de este nome) .Neste intervalo ,enquanto uma função vai para a zero (ou seja ,para x > 0 muito grande o limite de y é zero)[y] a outra não tem limite , à medida que x cresce , g cresce em uma velocidade maior que x .(OBS . : Observe que para x < 0 o argumento utilizado acima inverte com respeito as funções)

Entretanto ,existe um único x neste mesmo intervalo (x>0) tal que g(x) = y(x) .

Para isto basta tomar o logaritmo em ambos membros ,obtendo que log\left(\frac{9}{16}\right)^{x-3} = log \left(\frac{36}{27}\right)^{x+2} \iff log\left(\frac{9}{16}\right)^{x-3}  = log\left(\frac{4}{3}\right)^{x+2} 

\implies  (x-3)log \left(\frac{9}{16}\right) = (x+2)log\left(\frac{4}{3}\right) \iff x\left[log \left(\frac{9}{16}\right) -  log\left(\frac{4}{3}\right)\right ] =  2 \cdot log\left(\frac{4}{3}\right) + 3 \cdot log \left(\frac{9}{16}\right) \iff  x= \dfrac{2 \cdot log\left(\frac{4}{3}\right) + 3 \cdot log \left(\frac{9}{16}\right)}{log \left(\frac{9}{16}\right) -  log\left( \frac{4}{3}\right)\right }
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}