• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite no infinito]por que a expressão inicial influencia?

[Limite no infinito]por que a expressão inicial influencia?

Mensagempor marcosmuscul » Qua Mar 27, 2013 09:41

Calculando este limite:
achei como resposta 1.
mas o gabarito é -1.
compreendo o gabarito ao olhar para a expressão inicial.
mas porque a inicial é mais importante do que a final?
desculpe a minha ignorância. :-D
Anexos
porque -1 e nao 1.JPG
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Limite no infinito]por que a expressão inicial influenc

Mensagempor e8group » Qua Mar 27, 2013 22:22

A solução está incorreta ,pois a expressão final obtida é equivalente a primeira se , e somente se , x > 0 .Para x < 0 você está alterando o resultado.Reflita sobre isto .

Mas veja \sqrt{x^2 - 2x +2} = \sqrt{x^2[1 - 2/x +2/x^2]} = |x| \sqrt{1 - 2/x +2/x^2}   , x\neq 0 que para x < 0 fica -  x \sqrt{1 - 2/x +2/x^2} e x + 1 = x(1+1/x) , x\neq 0 .

Ficou claro ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limite no infinito]por que a expressão inicial influenc

Mensagempor marcosmuscul » Qui Mar 28, 2013 11:21

entendi amigo.
\sqrt[2]{{a}^{2}} = \left|a \right| sempre, sempre, sempre. valeu pelo esclarecimento.
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59