• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites envolvendo Raiz]

[Limites envolvendo Raiz]

Mensagempor jeferson lopes » Ter Mar 26, 2013 12:14

Quando envolve raiz qual a regra que aplico?

\lim_{9}f(x)=\sqrt[]{t}-3\div t-9

Tanto o numerador e o denominador não pode ser "0"
jeferson lopes
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Mar 25, 2013 10:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: [Limites envolvendo Raiz]

Mensagempor e8group » Ter Mar 26, 2013 13:02

Neste caso podemos fatorar o denominador ,obtendo que \frac{\sqrt{t}-3}{t-9} é equivalente a \frac{\sqrt{t}-3}{(\sqrt{t})^2 - 3^2} que por sua vez também é equivalente a \frac{\sqrt{t}-3}{(\sqrt{t}-3)(\sqrt{t}+3)} . Você ainda pode argumenta que para \sqrt{t} - 3\neq 0 ou seja , t \neq 9 ,teremos \frac{\sqrt{t}-3}{t-9} = \frac{1}{\sqrt{t} + 3} .


Basta calcular o limite agora .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.