• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por substituição trigonométrica.

Integral por substituição trigonométrica.

Mensagempor ClaudioSP » Qui Out 08, 2009 12:25

Bom dia.

Estou com algumas duvida nessa integral por substituição trigonométrica.

\int\sqrt{\frac{4}{{x}^{4}-{x}^{2}}}dx

Minha duvida é a seguinte, o caso que irei usar, é o caso 1 \sqrt{{a}^{2}-{b}^{2}*{u}^{2}} ou o caso 2 \sqrt{{b}^{2}*{u}^{2}-{a}^{2}}.

Escolhido um dos casos, quem chamarei de a, b e u?

Agradeço a ajuda.

Claudio M. Ribeiro
ClaudioSP
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 07, 2009 17:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Prod Mecanica
Andamento: cursando

Re: Integral por substituição trigonométrica.

Mensagempor ClaudioSP » Qui Out 08, 2009 14:25

Eu de novo, cheguei a isso será que está correto isso?
\int\frac{\sqrt{4}}{\sqrt{{x}^{4}-{x}^{2}}}dx = \int\frac{\sqrt{4}}{\sqrt{{x}^{2}*\left({x}^{2}-1 \right)}}dx

\int\frac{\sqrt{4}}{\sqrt{{x}^{2}}*\sqrt{{x}^{2}-1}}dx = \int\frac{2}{x*\sqrt{{x}^{2}-1}}dx

chegando a essa integra,l resolvi assim:

{a}^{2}= {1}^{2} \Leftrightarrow a =1

{b}^{2}= {1}^{2} \Leftrightarrow b =1

{u}^{2}= {x}^{2} \Leftrightarrow x =u

u = \frac{a}{b}* sec\theta \Leftrightarrow u = x = sec\theta

dx = (sec\theta)' = sec\theta * tg\theta d\theta

x = sec\theta

\sqrt{{x}^{2}-1}= a*tg\theta=tg\theta

Montando a nova integral:

\int \frac{2}{sec\theta*tg\theta}*sec\theta*tg\theta d\theta = 2\int \frac{sec\theta*tg\theta}{sec\theta*tg\theta} d\theta

Isso estaria correto?
ClaudioSP
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 07, 2009 17:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Prod Mecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}