• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de uma função trigonométrica

Limite de uma função trigonométrica

Mensagempor Douglas16 » Sáb Mar 16, 2013 21:52

\lim_{x\rightarrow\frac{\Pi}{2}} \left(\Pi-2x \right)tan\left(x \right)
Como \left(\Pi-2x \right) e cos x tendem a zero quando x\rightarrow\frac{\Pi}{2}, então o limite existe.
Agora só não sei se devo anular \left(\Pi-2x \right) com cos x, para eliminar a indeterminação ou devo procurar uma identidade para resolver o limite.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor e8group » Sáb Mar 16, 2013 23:39

Note que , (\pi -2x)tan(x) = 2(\frac{\pi}{2} -x)tan(x) = 2(\frac{\pi}{2} -x)\frac{sin(x)}{cos(x)} .


De cos(x) = sin(\frac{\pi}{2} -x) segue ,
(\pi -2x)tan(x) = 2(\frac{\pi}{2} -x)\frac{sin(x)}{sin(\frac{\pi}{2} -x)} = 2 \cdot \frac{sin(x)}{\dfrac{sin(\dfrac{\pi}{2} -x)}{\dfrac{\pi}{2} -x}} .



Consegue concluir ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor Douglas16 » Dom Mar 17, 2013 00:07

Eu tinha conseguido resolver antes de verificar se alguém tinha respondido, mas entendi sua resolução, e considerei mais simples que a minha resolução, bastava apenas lembrar da propriedade de que cosx=sin\left(\frac{\Pi}{2}-x \right).
Tipo, eu me impressiono comigo mesmo pela falta de capacidade de lembrar de coisas óbvias, vou tentar me concertar e vê o que está acontecendo comigo.
O que você faz para encontrar a resolução tão facilmente, tipo, você não esquece dessas propriedades?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Limite de uma função trigonométrica

Mensagempor e8group » Dom Mar 17, 2013 00:34

Apenas deduzo ,não consigo lembrar muitas coisas .Do ponto de vista geométrico é fácil ver que cos(x) = sin(\pi/2 - x) .De fato , sin(a+b) = sin(a)cos(b) + cos (a) sin(b) confirma isto ,onde a = \pi/2 e b = -x.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}