• Anúncio Global
    Respostas
    Exibições
    Última mensagem

números proporcionais regra de três

números proporcionais regra de três

Mensagempor susannol » Sáb Mar 16, 2013 22:14

Olá, boa noite! Fiquei com várias dúvidas nessa questão, pois o que ocorre, na verdade, é que não estou conseguindo montá-las de acordo com o que a questão me informa.

08.Uma grandeza x (x>0) varia de forma inversamente proporcional ao quadrado da grandeza y (y>0). Se para x = 16 temos y = 3, então para x = 4 temos y = 12.

- Nessa alternativa tentei fazer assim: x= 1/y² porque quando uma aumenta, a outra diminui ao quadrado. Então pus o x= 16 na fórmula e y deu igual a 1/4 e não três. Sendo assim, não consegui fazer bater o resultado que o exercício propõe.. Mas, pensei que se aumentasse o 8 duas vezes dava 16, mas qual número diminuindo duas vezes ao quadrado dá 3? Não estou conseguindo montar...


16. Ana tem ao todo 15 notas, sendo essas notas de 1 real, 5 reais e 10 reais, totalizando 100 reais. Se Ana tem pelo menos uma nota de cada tipo, então Ana possui 5 notas de 1 real.

Nessa questão fiz um sistema : 1a + 5b + 10c = 100
a + b + c = 15

achei b= 85 - 9c/ 4 , substituí na conta a + b + c = 15 e achei a = - 25 + 5c e novamente substituí o "a" e o "b" na conta a + b + c = 15 e encontrei c = 5. Só substitui o c na conta a = -25 + 5c e a = 0 e o b = 85 - 9c /4 -> b = 10. Coloquei os respectivos valores de "a", "b" e "c" na conta 1a + 5b + 10c = 100 e então, vê-se que não há notas de 1 real, pois 1a = 1.0 = 0.


64. Se Lucas pesa 70 kg e senta a 1,1 m do centro de apoio de uma gangorra, então Sofia, que pesa 55 kg, deverá sentar a 1,4 m do centro para que a gangorra fique em equilíbrio.

Nessa 64 tentei fazer uma regra de 3, Lucas 70 kg -- 1,1 m do centro
Sofia 55 kg --- x m do centro

encontrei x = 0,86 m, porém não é esse o resultado. Então tentei fazer de outra maneira, diminuí 70 - 55 = 15 kg e encontrei quantos metros do centro tem essa diferença, que deu igual a 0, 23. 70 kg -- 1,1 m.
15 kg -- x = 0, 23
Daí, somei 1,1 m + 0, 23 m = 1, 23 m Sofia tem que sentar.. Todavia, continuo errada.. Onde está meu erro nessas questões? Como as resolvo?

## As questões 16 e 64 estão corretas de acordo com o gabarito, e a 08 está errada, mesmo assim, gostaria de saber como montá-la ##

Obrigada desde já!
susannol
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mar 16, 2013 21:56
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.