• Anúncio Global
    Respostas
    Exibições
    Última mensagem

identidade que resolva o limite de uma função trigonométrica

identidade que resolva o limite de uma função trigonométrica

Mensagempor Douglas16 » Sex Mar 15, 2013 12:36

\lim_{x\rightarrow\propto} x*tan\frac{2}{x}=\lim_{x\rightarrow\propto}\frac{2x*sin\left\frac{1}{x}*cos\left(\frac{1}{x} \right) \right}{}\lim_{x\rightarrow\propto} x*tan\frac{2}{x}=\lim_{x\rightarrow\propto}\frac{2x*sin\left(\frac{1}{x}\right)*cos\frac{1}{x}}{cos\frac{2}{x}}\lim_{x\rightarrow\propto} x*tan\frac{2}{x}=\lim_{x\rightarrow\propto}\frac{2x*sin\left(\frac{1}{x}\right)*cos\frac{1}{x}}{cos\frac{2}{x}}=\lim_{x\rightarrow\propto} \frac{2x*sin\left(\frac{1}{x}\right)*cos\frac{1}{x}}{1-2{sin}^{2}x}

Beleza, agora eu preciso anular o termo x*sin\frac{1}{x} do numerador, mas para isso eu tenho que expressar cos\frac{2}{x} em função de x*sin\frac{1}{x}.
Existe uma expressão assim para cos\frac{2}{x}
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: identidade que resolva o limite de uma função trigonomét

Mensagempor e8group » Sex Mar 15, 2013 22:03

Faça a seguinte substituição , t = 2/x .Assim , quando x \to \infty  , t\to 0 ;logo ,


2  \lim_{t\to 0} \frac{1}{t} tan(t) = 2  \lim_{t\to 0} \frac{sin(t)}{t} \cdot \frac{1}{cos(t)}

De \lim_{t\to 0} \frac{sin(t)}{t} = 1 e \lim_{t\to 0} \frac{1}{cos(t)} = 1 ,obtemos

2  \lim_{t\to 0} \frac{1}{t} tan(t) = 2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: identidade que resolva o limite de uma função trigonomét

Mensagempor Douglas16 » Sex Mar 15, 2013 23:13

Valeu santhiago, mas gostaria de saber se você já encontrou a resolução na primeira observação da questão, ou fez mais de uma observação (tentativa) até concluir qual a forma correta para resolver?
Tipo, quero saber qual o raciocínio que você usou para começar a resolver o limite.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: identidade que resolva o limite de uma função trigonomét

Mensagempor e8group » Sáb Mar 16, 2013 00:07

A observação que você tem que nota é que


x \cdot tan \frac{2}{x}  =  2 \cdot \frac{tan \dfrac{2}{x}}{\dfrac{2}{x}} = 2\cdot  {\frac{sin\dfrac{2}{x}}{\dfrac{2}{x}}} \cdot \frac{1}{cos\dfrac{2}{x}} .


Para x> 0 \left(x < 0 \right) muito grande (em módulo ) , \frac{2}{x} se aproxima de zero .Por este motivo é conveniente a mudança de variável conforme postei acima ; logo ,o resultado do limite segue de imediato do limite fundamental trigonométrico e pelo fato que cos(2/x) \to 1 quando 2/x \to 0 ou cos(t) \to 1 quando t \to 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: identidade que resolva o limite de uma função trigonomét

Mensagempor Douglas16 » Sáb Mar 16, 2013 10:49

Então, minha pergunta foi mais para aprender como as outras pessoas se posicionam diante de uma questão assim.
Tipo, eu por exemplo muitas vezes, quando fui resolver um problema, procuro deixar de me focar em uma só possível forma de começar, para pensar em quantas formas eu puder encontrar e, assim avaliar qual é a melhor e correta forma de resolver a questão, só depois disso eu procuro colocar a "mão na massa". Por exemplo se pensei numa forma de resolver, primeiro desenvolver mentalmente a resolução para depois, caso ela aparentar nenhum erro de lógica, aí sim desenvolver no papel.
Foi isso que eu quis dizer como minha última dúvida.
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}