• Anúncio Global
    Respostas
    Exibições
    Última mensagem

À procura de uma identidade para o cosseno de 2/x

À procura de uma identidade para o cosseno de 2/x

Mensagempor Douglas16 » Sex Mar 15, 2013 00:18

cos \left(\frac{2}{x} \right)={cos}^{2}-{sin}^{2}x=1-2{sin}^{2}x=2{cos}^{2}x-1
Preciso encontra uma identidade para esta igualdade e que seja expressa em função de x e de sin\left(\frac{1}{x} \right) .
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: À procura de uma identidade para o cosseno de 2/x

Mensagempor DanielFerreira » Sex Mar 15, 2013 07:53

Douglas,
bom dia!

\\ \cos \left( \frac{2}{x} \right) = \\\\\\ \cos \left( \frac{1}{x}  + \frac{1}{x} \right) = \\\\\\ \cos \left( \frac{1}{x} \right) \cdot \cos \left( \frac{1}{x} \right) - \sin \left( \frac{1}{x} \right) \cdot \sin \left( \frac{1}{x} \right) = \\\\\\ \cos^2 \left( \frac{1}{x} \right) - \sin^2 \left( \frac{1}{x} \right) = \\\\\\ 1 - \sin^2 \left( \frac{1}{x} \right) - \sin^2 \left( \frac{1}{x} \right) = \\\\\\ 1 - 2 \cdot \sin^2 \left( \frac{1}{x} \right) \\\\ ...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: À procura de uma identidade para o cosseno de 2/x

Mensagempor Douglas16 » Sex Mar 15, 2013 09:33

Então eu esqueci de mencionar que deve ser na forma x*sin\left(\frac{1}{x} \right)
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}