• Anúncio Global
    Respostas
    Exibições
    Última mensagem

À procura de uma identidade para o cosseno de 2/x

À procura de uma identidade para o cosseno de 2/x

Mensagempor Douglas16 » Sex Mar 15, 2013 00:18

cos \left(\frac{2}{x} \right)={cos}^{2}-{sin}^{2}x=1-2{sin}^{2}x=2{cos}^{2}x-1
Preciso encontra uma identidade para esta igualdade e que seja expressa em função de x e de sin\left(\frac{1}{x} \right) .
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: À procura de uma identidade para o cosseno de 2/x

Mensagempor DanielFerreira » Sex Mar 15, 2013 07:53

Douglas,
bom dia!

\\ \cos \left( \frac{2}{x} \right) = \\\\\\ \cos \left( \frac{1}{x}  + \frac{1}{x} \right) = \\\\\\ \cos \left( \frac{1}{x} \right) \cdot \cos \left( \frac{1}{x} \right) - \sin \left( \frac{1}{x} \right) \cdot \sin \left( \frac{1}{x} \right) = \\\\\\ \cos^2 \left( \frac{1}{x} \right) - \sin^2 \left( \frac{1}{x} \right) = \\\\\\ 1 - \sin^2 \left( \frac{1}{x} \right) - \sin^2 \left( \frac{1}{x} \right) = \\\\\\ 1 - 2 \cdot \sin^2 \left( \frac{1}{x} \right) \\\\ ...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: À procura de uma identidade para o cosseno de 2/x

Mensagempor Douglas16 » Sex Mar 15, 2013 09:33

Então eu esqueci de mencionar que deve ser na forma x*sin\left(\frac{1}{x} \right)
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.