• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Indefinida] Aplicada à projeções de população

[Integral Indefinida] Aplicada à projeções de população

Mensagempor Matheus Lacombe O » Qui Mar 14, 2013 12:57

- Olá pessoal! Tudo bem?

- Minha professora de cálculo passou já faz algum tempo uma lista de exercícios com cinqüenta questões de integral indefinida do livro do Anton. Com uma certa dificuldade consegui resolver todas - mesmo que não tenha certeza das respostas dos exercícios pares, acredito que estejam certas. Porém, ela passou uma outra questão "solta" - exercício nº70 - em que o autor coloca um problema aplicado. E esta em particular, não consegui.

"Suponha que uma população 'p' de rãs em um lago está estimada no começo de 2005 em 100.000 e que o modelo de crescimento (em milhares) após t anos será de:"

p'(t)={(3+0.12t)}^{\frac{3}{2}}

" Estime a população projetada para o começo do ano de 2010."

- Eu tentei fazer uma integral definida do ano 5 até o ano 10:

\int_{5}^{10}{(3+0.12t)}^{\frac{3}{2}}dt

u=3+0.12t

\frac{du}{dt}=0.12

\frac{du}{dt}=\frac{3}{25}

du=\frac{3dt}{25}

\frac{du}{\frac{3}{25}}=dt

\frac{25du}{3}=dt

\int_{5}^{10}{u^{\frac{3}{2}}\frac{25du}{3}

\frac{25}{3}\int_{5}^{10}{u^{\frac{3}{2}}du=\frac{25}{3}.\frac{{u}^{\frac{5}{2}}}{\frac{5}{2}}

=\frac{25}{3}.\frac{2{u}^{\frac{5}{2}}}{5}

=\frac{50{u}^{\frac{5}{2}}}{15}=\frac{10{u}^{\frac{5}{2}}}{3}

\frac{25}{3}\int_{5}^{10}{u^{\frac{3}{2}}du=\left[\frac{10{u}^{\frac{5}{2}}}{3}{{\right]}_{5}}^{10}

- logo:

\frac{25}{3}\int_{5}^{10}{(3+0.12t)}^{\frac{3}{2}}dt=\left[\frac{10{(3+0.12t)}^{\frac{5}{2}}}{3}{{\right]}_{5}}^{10}

=\left(\frac{10{(3+\frac{3}{25}.10)}^{\frac{5}{2}}}{3}\right)-\left(\frac{10{(3+\frac{3}{25}.5)}^{\frac{5}{2}}}{3}\right)

=120.5-81.9

=38.5

- Se é "em milhares" então seria 38.500? Isso não faz muito sentido, pois a população começa em 100.000. Gente, onde foi que eu errei?


Grato, desde já.
Att. Matheus L. Oliveira
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Integral Indefinida] Aplicada à projeções de população

Mensagempor Russman » Qui Mar 14, 2013 14:08

O tempo é medido na função em "após t anos". Assim, como do início de 2005 até o inicio de 2010 passaram-se 5 anos, você deve fazer a integral de t=0 até t=5 e não de t=5 até t=10.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59