• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação - (PUC-SP) dúvida

Radiciação - (PUC-SP) dúvida

Mensagempor laura_biscaro » Qua Mar 13, 2013 00:11

Se \sqrt[2]{2} + \sqrt[2]{3} = \sqrt[2]{5+2\sqrt[2]{n}}, o valor de n é:
a)0
b)2
c)3
d)5
e)6
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Radiciação - (PUC-SP) dúvida

Mensagempor timoteo » Qua Mar 13, 2013 00:28

Oi.

Eleve os dois membros ao quadrado!

Haverá um multiplicação cruzada.

Espero ter ajudado!

R= e
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: Radiciação - (PUC-SP) dúvida

Mensagempor laura_biscaro » Qua Mar 13, 2013 00:44

Olá!
então, se eu elevasse ao quadrado, a equação ficaria assim:
2+3=5+2\sqrt[2]{n}
5=5+2\sqrt[2]{n}
mas, se eu cortasse os dois 5, nao ficaria:
0=2\sqrt[2]{n} ?
laura_biscaro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Fev 18, 2013 19:05
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Radiciação - (PUC-SP) dúvida

Mensagempor timoteo » Qua Mar 13, 2013 00:51

Na realidade a primeira parte da equação tem que ficar assim:

(\sqrt[]{2} + \sqrt[]{3})^{2} = (\sqrt[]{2} + \sqrt[]{3})(\sqrt[]{2} + \sqrt[]{3}) = 5 + 2 \sqrt[]{6}.


Continue daí!
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}