por Sobreira » Sex Mar 08, 2013 01:14
Olá,
Na questão abaixo tentei derivar normalmente em relação a x mas a resposta não bate.
Então derivando utilizando a regra da cadeia deu a mesma resposta do livro, mas sinceramente não entendo porque utilizar regra da cadeia nesta questão.
É uma função composta? Se sim pq?

Como tentei resolver inicialmente:

Como resolvi por regra da cadeia mesmo sem saber o porque:


"The good thing about science is that it's true whether or not you believe in it."
-
Sobreira
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Sex Out 12, 2012 17:33
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: formado
por Russman » Sex Mar 08, 2013 04:49
A função é de duas variáveis

e

:

.
Sendo a função

, ou seja, o argumento da função seno não é simplesmente

ou

, você tem algo do tipo

onde

.
Assim,

e a sua segunda solução está correta.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada de primeira e segunda ordem
por Nina » Qui Nov 05, 2009 20:52
- 1 Respostas
- 4119 Exibições
- Última mensagem por marciommuniz

Sex Nov 06, 2009 13:02
Cálculo: Limites, Derivadas e Integrais
-
- E.D.O. de primeira ordem - Aplicações
por cmantelli » Qui Mai 30, 2013 21:30
- 0 Respostas
- 885 Exibições
- Última mensagem por cmantelli

Qui Mai 30, 2013 21:30
Cálculo: Limites, Derivadas e Integrais
-
- Equação Diferencial de primeira ordem
por b11adriano » Sáb Out 25, 2014 23:21
- 1 Respostas
- 2558 Exibições
- Última mensagem por adauto martins

Dom Out 26, 2014 15:51
Cálculo: Limites, Derivadas e Integrais
-
- Derivada primeira
por LAZAROTTI » Dom Jun 24, 2012 17:33
- 1 Respostas
- 1746 Exibições
- Última mensagem por e8group

Dom Jun 24, 2012 18:38
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Primeira]
por LAZAROTTI » Ter Dez 11, 2012 21:52
- 1 Respostas
- 1828 Exibições
- Última mensagem por e8group

Ter Dez 11, 2012 22:29
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.