• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Limites Trigonométricos

[LIMITES] Limites Trigonométricos

Mensagempor felipeek » Sex Mar 01, 2013 19:10

Olá,

Apenas sabendo o limite fundamental:

$\lim_{x\rightarrow 0} \frac{sin(x)}{x}$ = 1

e sem utilizar L'Hopital é possível calcular qualquer limite trigonométrico?

Pergunto isso pois todo livro/aula de cálculo sempre recorre ao limite fundamental na hora de ensinar Limites Trigonométricos e todos exercícios são sempre baseados nesse limite especial.

Então fica a pergunta: Esse limite é tão poderoso assim a ponto de sempre conseguir resolver qualquer problema ou os livros sempre colocam ênfase nesse limite pelo fato dele ser muito importante para achar a derivada de sin(x) e cos(x)?

Obrigado
felipeek
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Mar 01, 2013 18:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [LIMITES] Limites Trigonométricos

Mensagempor Russman » Sex Mar 01, 2013 19:19

É verdade que esse resultado é amplamente aplicável, mas não sejamos radicais...
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [LIMITES] Limites Trigonométricos

Mensagempor felipeek » Sex Mar 01, 2013 22:03

hehe, é que na verdade o que se busca é um "método" para resolver qualquer problema similiar. Só não consigo me sentir confortável tentando reduzir tudo ao limite fundamental quando resolvo limites de trigonometria. Parece que aqueles exercícios foram "feitos" pra poderem ser resolvidos daquela maneira, entende? Claro que com L'Hopital torna-se muito mais fácil de resolver qualquer lim trigonométrico, mas mesmo assim os métodos de resolução "braçais" não parecem muito confiáveis
felipeek
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Mar 01, 2013 18:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59