Dois lados de um triângulo têm comprimentos a = 4cm e b = 3cm, mas estão crescendo a uma taxa de 1 cm/s. Se a área do triângulo permanece constante, a qual taxa está variando o ângulo alfa entre a e b quando alfa = pi/6.
Agradeço desde já quem puder ajudar!


é a área,
e
os lados conhecidos e
o ângulo entre eles.
, obtemos
.
. Isolando, então, a taxa de variação de
obtemos, finalmente![\frac{\mathrm{d} \alpha }{\mathrm{d} t} = -\tan \left ( \alpha \right )\left [ \frac{1}{b}\frac{\mathrm{d} b}{\mathrm{d} t}+\frac{1}{a}\frac{\mathrm{d} a}{\mathrm{d} t} \right ] \frac{\mathrm{d} \alpha }{\mathrm{d} t} = -\tan \left ( \alpha \right )\left [ \frac{1}{b}\frac{\mathrm{d} b}{\mathrm{d} t}+\frac{1}{a}\frac{\mathrm{d} a}{\mathrm{d} t} \right ]](/latexrender/pictures/6df2f19f4d950eab8c1bc78b67930516.png)
