por samysoares » Ter Fev 26, 2013 13:11
-
samysoares
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jan 08, 2013 12:42
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Jhonata » Ter Fev 26, 2013 13:47
samysoares escreveu:![\lim_{x\rightarrow2} \frac{tg2(x-2)}{\sqrt[]{x+2}-2} \lim_{x\rightarrow2} \frac{tg2(x-2)}{\sqrt[]{x+2}-2}](/latexrender/pictures/829953c2b59bddc32b43b0ca154ba37b.png)
Sugestão: Trate

como uma constante e passe o limite, assim:
![tan2 \lim_{x\rightarrow2} \frac{(x-2)}{\sqrt[]{x+2}-2} tan2 \lim_{x\rightarrow2} \frac{(x-2)}{\sqrt[]{x+2}-2}](/latexrender/pictures/08b7f7233256555befb89b132d8fa814.png)
. Tente resolver esse limite, se não conseguir, poste sua dúvida. ;D
Abraços.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por samysoares » Ter Fev 26, 2013 14:20
consegui. Muito obrigada. Você poderia me dizer em quais casos eu faço subsituição por outra variável, ou eu tenho que analisar cada caso?
-
samysoares
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jan 08, 2013 12:42
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Jhonata » Ter Fev 26, 2013 14:29
samysoares escreveu:consegui. Muito obrigada. Você poderia me dizer em quais casos eu faço subsituição por outra variável, ou eu tenho que analisar cada caso?
Em limites no cálculo I, particularmente, não existem regras especificas pra substituição. Acho dependerá de cada caso pra substituir a variável e calcular assim um novo limite.
Abraços.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4853 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7037 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] calculo de limite trigonométrico
por PRADO » Dom Mai 22, 2016 17:01
- 2 Respostas
- 5459 Exibições
- Última mensagem por PRADO

Sex Jun 03, 2016 23:25
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico]
por Ana_Rodrigues » Qui Jan 26, 2012 18:54
- 4 Respostas
- 2717 Exibições
- Última mensagem por Ana_Rodrigues

Sex Jan 27, 2012 14:28
Cálculo: Limites, Derivadas e Integrais
-
- Limite trigonométrico
por jmoura » Dom Mar 25, 2012 21:25
- 2 Respostas
- 1985 Exibições
- Última mensagem por LuizAquino

Seg Mar 26, 2012 13:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.