• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivadas]Ajuda básica

[derivadas]Ajuda básica

Mensagempor MarlonMO250 » Dom Fev 24, 2013 16:37

Olá, estou começando a estudar derivadas e estou com uma duvida meio basica em uma questão, no caso 3/x², no formato: f'(x)= lim.......f(x+?x) - f(x), como eu resolvo essa derivada nesse modelo?
...........................................................................................................................................................?x ? 0.........?x
MarlonMO250
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Fev 03, 2013 11:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [derivadas]Ajuda básica

Mensagempor 11121EEL061 » Dom Fev 24, 2013 18:41

Olá, aqui está minha resolução, vou trocar ?x ? 0 por h ? 0, para facilitar.

f(x) = 3/x²

f '(x) = lim(h ? 0) f(x+h) - f(x) / h
= lim(h ? 0) (3/(x+h)² + 3/x²)/h
= lim(h ? 0) (3x²-3(x+h)²)/(hx²(x+h)²)
= lim(h ? 0) (3x² -3x² -6xh -3h²)/(hx²(x²+2xh+h²)
= lim(h ? 0) h(-6x-3h)/hx²(x²+2xh+h²)
= lim(h ? 0) (-6x-3h)/(x^4 +2x³h+2x²h²)
= lim(h ? 0) (-6/x(x³+2x²h+2xh²)) + (-3h/(x^4 +2x³h+2x²h²)) Como h tende a zero, é só substituir zero no lugar de h.
= -6/x³

Espero ter ajudado. Fica com Deus.
11121EEL061
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Fev 24, 2013 18:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [derivadas]Ajuda básica

Mensagempor MarlonMO250 » Dom Fev 24, 2013 19:24

Cara, primeiro agradeço imensamente pela resposta, mas voltando ao problema, porque você pasou de \lim_{h\rightarrow0} \frac{\frac{3}{(x+h)^2} - \frac{3}{x^2}}{h} pra \lim_{h\rightarrow0} \frac{\frac{3}{(x+h)^2} + \frac{3}{x^2}}{h}, porque a troca de sinal?

e depois, como foi disso: \lim_{h\rightarrow0} \frac{\frac{3}{(x+h)^2} + \frac{3}{x^2}}{h} pra \lim_{h\rightarrow0} \frac{3x^2-3(x+h)^2}{hx^2(x+h)^2}?
MarlonMO250
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Dom Fev 03, 2013 11:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: [derivadas]Ajuda básica

Mensagempor Russman » Dom Fev 24, 2013 20:21

As passagens as quais você tem dúvida são simples desenvolvimento algébrico.

Veja que

[tex]\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{db}[/tex],

de forma que

\frac{\frac{3}{(x+h)^2} + \frac{3}{x^2}}{h} = \frac{\frac{3x^2+3(x+h)^2}{x^2(x+h)^2}}{h} = \frac{3x^2+3(x+h)^2}{hx^2(x+h)^2}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.