• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão do concurso da Compesa-PE - Permutação circular

Questão do concurso da Compesa-PE - Permutação circular

Mensagempor Dayse » Qui Fev 21, 2013 18:15

Numa mesa redonda, há um professor e cinco alunos estudando matemática. O professor é o único que não sai do lugar onde está. Sabendo disso, o número de permutações entre os estudantes é:


A) 5040. B) 720. C) 120. D) 24. E) 6.


- Eu sei que a fórmula da permutação circular é: Pc (m-1)!, daí encontrei 24, porém no gabarito diz que é 120. Alguém pode explicar?

Grata.
Dayse
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Fev 21, 2013 18:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Química
Andamento: formado

Re: Questão do concurso da Compesa-PE - Permutação circular

Mensagempor Cleyson007 » Qui Fev 21, 2013 18:27

Boa tarde Dayse!

Seja bem-vinda ao AjudaMatemática :y:

Bom, análise combinatória não é o meu forte.. Mas acredito que seja isso:

n = número de pessoas ao redor da mesa = 6 (1 professor + 5 alunos)

Pc = (n - 1)!

Pc = (6 - 1)!

Pc = 5! --> Pc = 120

Vamos ver o que os demais colegam dizem :y:

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Questão do concurso da Compesa-PE - Permutação circular

Mensagempor Dayse » Qui Fev 21, 2013 18:36

Obrigada!

Bom, também pensei assim. Mas como o professor não sai do lugar, então só vai ocorrer a permutação entre os 5 alunos. Daí eu iria subtrair 1 desses 5.
Dayse
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Fev 21, 2013 18:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Química
Andamento: formado

Re: Questão do concurso da Compesa-PE - Permutação circular

Mensagempor DanielFerreira » Qui Fev 21, 2013 23:44

Dayse e Cleyson,
boa noite!
Pensei da seguinte forma, mas, não garanto que seja a forma correta; afinal, esse assunto também não é o meu forte. [risos]

Fixemos um lugar para o professor (x) ficar. Exemplo, na primeira posição - que não existe, mas, vamos imaginar :-D : X,a,b,c,d,e,X,a,b,c,d,e,X
Com isso, vamos calcular apenas a permutação entre os alunos...

\\ P_c = (n - 1)! \\ P_c = (5 - 1)! \\ P_c = 4! \\ \boxed{P_c = 24}


E, se o professor estivesse ocupando a segunda posição: a,X,b,c,d,e,a,X,a,b,c,d,e,a,X
Calculemos as permutações...

\\ P_c = (n - 1)! \\ P_c = (5 - 1)! \\ P_c = 4! \\ \boxed{P_c = 24}


Se, fosse a terceira posição: a,b,X,c,d,e,a,b,X,c,d,e,a,b,X

\\ P_c = (n - 1)! \\ P_c = (5 - 1)! \\ P_c = 4! \\ \boxed{P_c = 24}


Se, quarta posição: a,b,c,X,d,e,a,b,c,X,d,e,a,b,c,X

\\ P_c = (n - 1)! \\ P_c = (5 - 1)! \\ P_c = 4! \\ \boxed{P_c = 24}


Enfim, a quinta posição: a,b,c,d,X,e,a,b,c,d,X,e,a,b,c,d,X

\\ P_c = (n - 1)! \\ P_c = (5 - 1)! \\ P_c = 4! \\ \boxed{P_c = 24}


No enunciado, não foi dito qual o posicionamento do professor na mesa, então, temos aquelas possibilidades. Inclusive, vale ressaltar que quando x ocupa a sexta posição ela coincide com a primeira, isto é, X,a,b,c,d,e,X,a,b,c,d,e,X = a,b,c,d,e,X,a,b,c,d,e,X,a,b,c,d,e,X.


Portanto,

\\ 5 \times 24 = \\ \boxed{\boxed{120}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Questão do concurso da Compesa-PE - Permutação circular

Mensagempor Dayse » Sex Fev 22, 2013 00:09

É, desse jeito tem mais sentido!

Obrigada mesmo, muito bom :D
Dayse
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Fev 21, 2013 18:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Química
Andamento: formado

Re: Questão do concurso da Compesa-PE - Permutação circular

Mensagempor Cleyson007 » Sex Fev 22, 2013 09:20

Bom dia Danjr5!

Excelente explicação :y:

Que bom que a dúvida da Dayse foi sanada. Muito obrigado por sempre colaborar :)

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.