• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Dupla] Em coordenadas polares

[Integral Dupla] Em coordenadas polares

Mensagempor RenatoP » Qui Fev 21, 2013 16:40

Olá,
Estou com o seguinte problema:

Calcular a integral \int_R\int \sqrt{(x^2 + y^2)} dA sendo R a região interna a circunferência de centro (0,1) e raio 1, e entre as retas y=x e x=0 (usar coordenadas polares).

A área é essa:
Imagem

Minha primeira tentativa foi dividir em duas regiões R1 e R2, sendo:

R1: O quarto de circulo superior, ficando:
0 \leq r \leq 1
e
0 \leq \theta \leq \pi/2

R2: O quarto de cirulo inferior, ficando:

3\pi/2 \leq \theta \leq 2\pi

Porém eu esbarro na hora de definir os limites do "r", pois a reta x=y eu não consigo transformar para polar.

Alguma dica para me ajudar?
RenatoP
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jul 09, 2012 18:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Controle e Automação
Andamento: cursando

Re: [Integral Dupla] Em coordenadas polares

Mensagempor young_jedi » Sex Fev 22, 2013 00:40

nos temos que a circunferencia tem equação

x^2+(y-1)^2=1

em cooredenada polares

(r.cos(\theta))^2+(r.sen(\theta)-1)^2=1

r^2.cos^2(\theta)+r^2.sen^2(\theta)-2r.sen(\theta)+1=1

r=2.sen(\theta)

como a intersecção da reta se com a circunferencia se da em (1,1)

então neste ponto o angulo teta é igual a 45º
portanto a integral sera

0\leq r\leq sen(\theta)

0\leq \theta \leq \frac{\pi}{4}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Dupla] Em coordenadas polares

Mensagempor RenatoP » Sex Fev 22, 2013 10:40

Humm.. é bem mais fácil do que eu estava pensando hehe

Consegui a resposta: \frac{\pi}{12}\sin^3\theta

Estou correto?

Obrigado, ate mais...
RenatoP
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jul 09, 2012 18:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Controle e Automação
Andamento: cursando

Re: [Integral Dupla] Em coordenadas polares

Mensagempor young_jedi » Sex Fev 22, 2013 12:25

na verdade a integral vai ficar

\int_{0}^{\frac{\pi}{4}}\int_{0}^{2.sen\theta}\sqrt{r^2}.r.dr.d\theta

\int_{0}^{\frac{\pi}{4}}\int_{0}^{2.sen\theta}r^2.dr.d\theta

integrando em r

\int_{0}^{\frac{\pi}{4}}\frac{8.sen^3(\theta)}{3}d\theta

agora integrando em teta

por u du

u=cos(\theta)

du=-sen(\theta)d\theta

\frac{8}{3}\int_{0}^{\frac{\pi}{4}}(1-cos^2(\theta))sen(\theta)d\theta

-\frac{8}{3}\int_{0}^{\frac{\pi}{4}}(1-u^2)du

-\frac{8}{3}\left(u-\frac{u^3}{3}\right)

-\frac{8}{3}\left(cos(\theta)-\frac{cos^3(\theta)}{3}\right)\Bigg|_{0}^{\frac{\pi}{4}}

-\frac{8}{3}\left(\frac{\sqrt2}{2}-\frac{2\sqrt2}{3.8}\right)+\frac{8}{3}\left(1-\frac{1}{3}\right)

\frac{16}{9}-\frac{10\sqrt2}{9}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.