• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Plana (soma dos 4 angulos)

Geometria Plana (soma dos 4 angulos)

Mensagempor Rafael Pitzer » Seg Fev 11, 2013 18:54

Imagem

1- ? = 180-y + 180-?
2- ? = 180-y + 180-?
3- ? = y + 180-?
4- ? = y + 180-?

y = 180-?+180-?

substituindo o y em 3 por exemplo

? = 180-?+180-?+180-? efetuando a soma de ? nos dois lados
?+? = 180-?+180+180-? efetuando a soma de ? nos dois lados
?+?+? = 180+180+180-? efetuando a soma de ? nos dois lados
?+?+?+? = 180+180+180
?+?+?+? = 540°

Gostaria de saber se o meu raciocínio está correto.
Rafael Pitzer
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jan 30, 2013 12:12
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Geometria Plana (soma dos 4 angulos)

Mensagempor young_jedi » Seg Fev 11, 2013 20:36

amigo eu calculei aqui usando um procedimento diferente e o resultado deu esse mesmo
540º , porem não entendi como voce chegou nas relações das primeiras equações que voce colocou, se tivesse com demonstrar, ficaria grato.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Geometria Plana (soma dos 4 angulos)

Mensagempor DanielFerreira » Ter Fev 12, 2013 12:54

Rafael,
seu raciocínio está correto!

Young_jedi,
o Rafael fez o seguinte: atribuiu a um dos ângulos uma variável bem parecida com um dos ângulos dado. Confesso que demorei a perceber isso. [risos]!

di.png
di.png (9.71 KiB) Exibido 1896 vezes
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Geometria Plana (soma dos 4 angulos)

Mensagempor young_jedi » Ter Fev 12, 2013 13:51

a agora sim entendi, tem uma variavel y, eu estava achando que era \gamma
então esta tudo certo

valeu pela demonstração ai danjr5
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Geometria Plana (soma dos 4 angulos)

Mensagempor DanielFerreira » Ter Fev 12, 2013 17:02

:y:

Até a próxima!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}