• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral do impulso

Integral do impulso

Mensagempor delara » Sáb Fev 02, 2013 10:35

Bom dia.

Estou com um pouco de dúvidas quanto a calcular a integral:

\int\limits_{-\infty}^{+\infty}~\delta((t-2)/5)dt

De forma generalizada, integrando o impulso(ou a distribuição Delta de Dirac) de {-\infty} até {+\infty} obtenho a função degrau unitário(função de Heaviside):

De forma geral:

u(t) = \begin{cases}
 1, & t > 0 \\
 0, & t < 0
\end{cases}

Neste caso, a função está temporalmente deslocada em (t-2).

Usei o wolframalpha para ver o resultado, mas não entendi o porque do resultado ser igual a 5.

Como o divisor do argumento de \delta "passou" como produto?

Muito obrigado!
delara
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 31, 2013 09:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Exatas/Engenharia
Andamento: cursando

Re: Integral do impulso

Mensagempor delara » Sáb Fev 02, 2013 10:47

Desculpem o incômodo.

Já encontrei uma solução:

Utilizando a propriedade de escala:

\delta(a(t-t_0)) = \frac{1}{|a|} \delta(t-t_0)

Portanto:

\delta\left(\frac{(t-2)}{5}\right) = \delta\left(\frac{1}{5}(t-2)\right) = \frac{1}{|\frac{1}{5}|}\delta(t-2) = 5\delta(t-2)

Portanto integrando no mesmo problema, sobrará a constante 5.

:)
delara
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 31, 2013 09:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Exatas/Engenharia
Andamento: cursando

Re: Integral do impulso

Mensagempor Russman » Sáb Fev 02, 2013 12:57

Exibir a dúvida é uma ótima forma de pensar mais sobre ela! hahah
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.