• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral iterada

Integral iterada

Mensagempor JEOVA » Sex Fev 01, 2013 01:45

Calcule a integral iterada
1) \int_{2}^{4}\int_{-1}^{1}\left ( x^{2}+y^{2} \right )dydx



2)\int_{0}^{2}\int_{0}^{1}\left ( 2x+y)^{8} \right dxdy
JEOVA
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Fev 01, 2013 00:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Integral iterada

Mensagempor DanielFerreira » Dom Fev 10, 2013 20:38

Jeova,
seja bem-vindo!
Procure postar apenas uma questão por tópico e explanar suas dúvidas/tentativas, ok?!

\\ \int_{2}^{4}\int_{- 1}^{1}(x^2 + y^2) \; dydx = \\\\\\ \int_{2}^{4}\left [ x^2y + \frac{y^3}{3} \right ]_{- 1}^{1} \; dx = \\\\\\ \begin{cases} F(1) = x^2 \cdot 1 + \frac{1^3}{3} \Rightarrow \boxed{x^2 + \frac{1}{3}}\\\\ F(- 1) = x^2 \cdot (- 1) + \frac{(- 1)^3}{3} \Rightarrow \boxed{- x^2 - \frac{1}{3}}\end{cases} \\\\\\ \boxed{\boxed{F(1) - F(- 1) = 2x^2 + \frac{2}{3}}} \\\\\\ \int_{2}^{4}\left (2x^2 + \frac{2}{3}  \right )dx = \\\\\\ \left [ \frac{2x^3}{3} + \frac{2x}{3} \right ]_{2}^{4} = \\\\\\ \begin{cases} G(4) = \frac{2 \cdot (4)^3}{3} + \frac{2 \cdot 4}{3}\Rightarrow \boxed{\frac{128 + 8}{3}} \\\\ G(2) = \frac{2 \cdot (2)^3}{3} + \frac{2 \cdot 2}{3} \Rightarrow \boxed{\frac{16 + 4}{3}}\end{cases} \\\\\\ G(4) - G(2) = \frac{128 + 8 - 16 - 4}{3} \\\\\\ \boxed{\boxed{\boxed{G(4) - G(2) = \frac{116}{3}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: