• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação do Primeiro Grau] Problema

[Equação do Primeiro Grau] Problema

Mensagempor ALPC » Sáb Jan 19, 2013 14:51

Olá, estou tendo dificuldades em resolver essa questão de concurso público:
A quantia de R$ 2.000,00 vai ser dividida igualmente entre x
pessoas. Como faltaram 5 pessoas, cada uma das restantes
recebeu R$ 20,00 a mais. Determine o número de pessoas que
participaram.
a) 25.
b) 30.
c) 28.
d) 20.
Resposta: A


Eu tentei chegar a uma solução da seguinte maneira:
\frac {2000}x = \frac{2000 + 20}{x - 5}

\frac {2000(x-5) = 2020x}{x(x-5)}

2000x - 10000 = 2020x
2000x - 2020x = 10000
-20x = 10000
x = \frac {10000}{-20}
x = 500

Como você viu, cheguei a um resultado bem diferente, creio que minha solução está errada.
Alguém poderia me ajudar a chegar uma solução correta? agradeço desde ja.
Avatar do usuário
ALPC
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Jan 04, 2013 16:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação do Primeiro Grau] Problema

Mensagempor young_jedi » Sáb Jan 19, 2013 15:27

na verdade voce tem que

\frac{2000}{x}=\frac{2000}{x-5}-20

\frac{2000(x-5)}{x(x-5)}=\frac{2000.x-20.x(x-5)}{x(x-5)}

2000x-10000=2000x-20x^2+100x

20x^2-100x-10000=0

x^2-5x-500=0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação do Primeiro Grau] Problema

Mensagempor ALPC » Sáb Jan 19, 2013 18:02

Opa, obrigado amigo, vacilei ali.

Resolvi a equação do segundo grau por Bhaskara e realmente obtive 25.
Mas eu não estou conseguindo entender direito uma coisa, o problema fala:
Como faltaram 5 pessoas, cada uma das restantes
recebeu R$ 20,00 a mais.

Então por que subtrair 20 em vez de somar 20?
Avatar do usuário
ALPC
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Jan 04, 2013 16:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação do Primeiro Grau] Problema

Mensagempor young_jedi » Dom Jan 20, 2013 09:23

antes cada um recebeu a quantia de

\frac{2000}{x}

agora cada um recebeu a mesma quantia mais 20, ou seja

\frac{2000}{x}+20

mais isso é o mesmo que dividir 2000 pelo novo numero de pessoas

\frac{2000}{x}+20=\frac{2000}{x-5}

eu so passei o 20 para o outro lado da equação

\frac{2000}{x}=\frac{2000}{x-5}-20

na verdade oque eu fiz foi desnecessario, poderia ter tirado direto o mmc da equação anterior, mais enfim, da no mesmo
espero ter ajudado
ate mais.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação do Primeiro Grau] Problema

Mensagempor ALPC » Dom Jan 20, 2013 12:53

Agora eu entendi, obrigado.
Avatar do usuário
ALPC
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Jan 04, 2013 16:26
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D