• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Quadricas

Quadricas

Mensagempor manuel_pato1 » Sex Jan 18, 2013 00:34

Identificar e representar graficamente as superfícies expressas pelas equações nos intervalos dados:

a) \frac{x^2}{1} + \frac{y^2}{4}= \frac{-z}{3} no intervado -3\leq z \leq0

Alguém pode me dar uma luz? como devoo proceder para conseguir uma superfície somente no intervalo dado?
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Quadricas

Mensagempor Russman » Sex Jan 18, 2013 00:49

Isto é uma fatia de um parabolóide elíptico.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Quadricas

Mensagempor manuel_pato1 » Sex Jan 18, 2013 22:54

Ok, mas como eu procedo para resolver esse tipo de exerício, mostrando algebricamente que é um parabolóide elíptico?

tenho que chutar z= 0 , z= -3 e um valor intermediário entre o intervalo?
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Quadricas

Mensagempor Russman » Sex Jan 18, 2013 23:00

Não sei se a intenção é "mostrar algebricamente" que é um paraboloide elíptico. A curva dada por essa equação DEFINE-SE como um paraboloide elíptico. É um nome que se dá a esse tipo de curva com essa equação. Logo, basta reconhece-la.

O que você pode argumentar é que os denominadores de x² e y² são diferentes, logo é algo elíptico. E ainda como z aparece sem potência, nessa combinação, é um paraboloide.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Quadricas

Mensagempor manuel_pato1 » Sex Jan 18, 2013 23:08

Entendi cara. Brigadão hein!

Acho que onde eu tenho que chutar alguns valor é pra hora que eu for desenhar no R³
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Quadricas

Mensagempor Russman » Sex Jan 18, 2013 23:13

É, pra desenhar essa curva seria interessante, como pede, você delimita-la entre z=-3 e z=0. Substituindo esses valores na equação você vai ter a curva plana de x e y. Uma é uma elipse e outra um ponto.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59