• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação

Inequação

Mensagempor Luna » Seg Set 28, 2009 18:55

Como resolver a seguinte inequação.

A) X - 3X-1 ? 1
4 10
Luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Set 10, 2009 19:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: Inequação

Mensagempor Luna » Seg Set 28, 2009 19:00

X/4 - 3X-1/10 \leq1[quote="Luna"]Como resolver a seguinte inequação.
Luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Set 10, 2009 19:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: Inequação

Mensagempor Molina » Seg Set 28, 2009 22:29

Luna, confirma:

\frac{x}{4}-\frac{3x-1}{10} \leq 1

É isso?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Inequação

Mensagempor Luna » Ter Set 29, 2009 14:45

É Isto mesmo.
Luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Set 10, 2009 19:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: Inequação

Mensagempor Molina » Ter Set 29, 2009 16:50

\frac{x}{4}-\frac{3x-1}{10} \leq 1

\frac{5x-2(3x-1)}{20} \leq 1

5x-6x+2 \leq 20

-x \leq 18

x \geq -18
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}