• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Congruência

Congruência

Mensagempor ronie_mota » Dom Set 27, 2009 16:59

"Ache o resto da divisão de 5^{60} por 26"
5^2\equiv-1 mod 26
(5^2)^{30}\equiv(-1)^{30}\equiv1 mod 26

"....... 3^{100} por 34"
Nessa eu nem sei por onde começar. Alguém poderia me ajudar?
ronie_mota
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jul 22, 2008 14:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: Telecomunicações
Andamento: cursando

Re: Congruência

Mensagempor Molina » Seg Set 28, 2009 16:15

Olá.

Favor confirmar a resposta antes de assumi-la como verdadeira:

ronie_mota escreveu:"Ache o resto da divisão de 5^{60} por 26"


5^0\equiv1\;(mod26)
5^1\equiv5\;(mod26)
5^2\equiv25\;(mod26)
5^2\equiv(-1)\;(mod26)
(5^2)^{30}\equiv(-1)^{30}\;(mod26)
5^{60}\equiv1\;(mod26)

Logo, o resto é 1.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.