• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda para Limites

Ajuda para Limites

Mensagempor Optikool » Seg Jan 07, 2013 12:04

Pessoal, Boas

Precisava que me ajudassem com este limite:

\lim_{x \rightarrow 0}\frac{(e^x-1)(cos(x)-1)}{log(1+x^3)}

Não estou a ver como se faz.

Cumprimentos,

Optikool
Optikool
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Dez 02, 2012 21:16
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura Informatica
Andamento: cursando

Re: Ajuda para Limites

Mensagempor e8group » Seg Jan 07, 2013 23:40

Observe primeiro os limites fundamentais :

\lim_{x\to 0} sin(x)/x = 1  \hspace{8mm} (1)


\lim_{x\to 0} (1+ x)^{1/x} =e \hspace{8mm}  (2)


Com base nisto ,escrevendo o limite inicial como ln(10) \cdot \lim_{x\to 0} \frac{(e^x -1)}{x} \cdot \lim_{x\to 0} \frac{(cos(x)-1)}{x^2} \cdot\lim_{x\to 0}\frac{x^3}{ln(x^3 + 1)} .

Vou deixar como exercício para você tentar manipular o limite inicial conforme acima .

Antes, deixo uma dica : log(x^3 + 1) = \frac{ln(x^3 + 1)}{ln(10)} .



Prosseguindo , fazendo e^x  - 1 = \lambda implica x = ln(\lambda +1 ) .


Fazendo a susbstituição e pelo limite fundamental (2) , mostre que \lim_{x\to 0} \frac{(e^x -1)}{x}  = 1


Entretanto , já o limite , \lim_{x\to 0} \frac{(cos(x)-1)}{x^2} .


Perceba que cos(x) = cos(\frac{x}{2} + {x}{2} ) =  cos^2(x/2)  - sin^2(x/2) .

Segue que , cos(x)-1 =   cos^2(x/2)  - sin^2(x/2) - 1  =  - (1 - cos^2(x/2) ) - sin^2(x/2) .

Usando-se cos^2(x/2) + sin^2(x/2) = 1 na expressão acima ,vem que :

cos(x)-1 =  -2 sin^2(x/2) . Assim , \lim_{x\to 0} \frac{(cos(x)-1)}{x^2} =  \lim_{x\to 0} \frac{-2sin^2(x/2)}{x^2} = -\frac{1}{2}\lim_{x\to 0} \frac{sin^2(x/2)}{\frac{x^2}{4}} = -\frac{1}{2} \lim_{x\to 0}\left(\frac{sin(x/2)}{x/2}\right)^2

Mostre que este limite é - \frac{1}{2} usando limite fundamental (1)


Quano o último limite ,de forma análoga ao primeiro mostre usando-se (2) , que resulta 1 . Faça x^3 = \theta .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?