• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajudem a entender esta resolução

Me ajudem a entender esta resolução

Mensagempor Valmel » Sex Dez 07, 2012 11:11

Escrevendo-se a série natural dos números inteiros,sem separar os algarismos,qual é o 500º algarismo escrito.


Eu não entendi a partir dos 3 algarismos,os 311.Por que ele usa o 309?A partir daí não entendi do jeito que ele explicou,peço ajuda de um colaborador,pois da forma como explicam,eu entendo.
Gabarito:0


Resolução:

Com 1 algarismo: 1 a 9: são 9 números e 9.1 = 9 algarismos.
# Com 2 algarismos: 10 a 99: são (99-10+1 = 90) números e 90.2 = 180 algarismos.
Assim sendo, temos até aqui 189 algarismos, portanto para o 500° faltam 500 - 189 = 311 algarismos. A partir daqui, cada número terá 3 algarismos, se usarmos 309 algarismos, teríamos 309÷3 = 103 números. Do 100 ao 202 são (202-100+1 = 103) números.

Isso quer dizer que ao escrevermos a seqüencia, quando chegamos em 202, já usamos 9+180+309 = 498 algarismos, assim faltam dois algarismos. O próximo número seria 203, mas só temos 2 algarismos, então o último a ser escrito seria o zero (0).
Valmel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Set 27, 2012 17:59
Localização: Ceará
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Me ajudem a entender esta resolução

Mensagempor DanielFerreira » Sáb Dez 08, 2012 18:28

1 à 9 = (9 - 1 + 1) X 1 = 9 algarismos

10 à 99 = (99 - 10 + 1) X 2 = 180 algarismos

100 à 999 = (999 - 100 + 1) X 3 = 2.700 algarimos

note que ao efetuar a soma acima, iremos obter 2.889 algarismos. Essa soma nos dá a posição do algarismo, portanto:


1 à 9 = (9 - 1 + 1) X 1 = 9 algarismos

10 à 99 = (99 - 10 + 1) X 2 = 180 algarismos

100 à k = (k - 100 + 1) X 3 = 3(k - 99) algarismos
--------------------------------------------------------------
9 + 180 + 3(k - 99) = 500
189 + 3k - 297 = 500
3k = 608
k = 202,6

Valmel,
saiba que se a divisão fosse exata, ou seja, se k = 202, teríamos como nº ocupante da posição 500ª o 202, portanto o algarismo 2 (último), veja:
498ª = 2
499ª = 0
500ª = 2


Podemos concluir que as posições são dadas por:

...
500ª =====> 3k = 608
501ª =====> 3k = 609 ===================> k = 203
502ª =====> 3k = 610
...

Uma vez que, k = 203, o raciocínio é análogo ao anterior.
Como a divisão é exata, ou seja, se k = 203, temos como nº ocupante da posição 501ª o 203, portanto o algarismo 3 (último), veja:
499ª = 2
500ª = 0
501ª = 3

Comente qualquer dúvida!

Daniel F.











Comente qualquer dúvida!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}