• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinações] Aplicação prática

[Combinações] Aplicação prática

Mensagempor Gustavo Gomes » Ter Dez 04, 2012 22:52

Olá, pessoal.

"Um engenheiro fará uma passarela de 10m de comprimento, ligando a porta da casa ao portão da rua. A passarela terá 1m de largura e ele, para revestí-la, dispõe de 10 pedras quadradas de lado 1m e 5 pedras retangulares de 1m x 2m.
Todas as pedras são da mesma cor, as pedras de mesmo tamanho são indistinguíveis uma das outras e o rejunte ficará aparente, embora com espessura desprezível. De quantas maneiras ele pode revestir a passarela?"

A resposta é 89 possibilidades.

De fato, para o revestimento podem ser combinadas pedras (1x1, 1x2), apenas nas seguintes quantidades: (10, 0), (8, 1), (6, 2), (4, 3), (2, 4) e (0, 5).

Para os casos (10, 0) e (0, 5) só existe uma forma de revestir a passarela em cada caso.

Já para os outros, estou com dificuldades em quantifivar as possíveis posições das pedras, sem contá-las exaustivamente.
Para o caso (8, 1), é fácil observar que são 9 possibilidades, alterando-se apenas a única pedra 2x1, mas para os demais.....

É sugerido utilizar combinações, de fato, para o caso (8, 1), 9 = C9,1. Aplicando esse processo nos demais casos, a resposta se verifica, mas não consegui entender o porque de se aplicar Combinação nesse contexto. Ou seja, como, no cenário contextualizado, as combinações das somas das pedras 1x1 e 1x2 utilizadas, tomadas n a n (n = nº de pedras 1x2 utilizadas em cada caso) resolvem o problema...

Aguardo. Grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Combinações] Aplicação prática

Mensagempor young_jedi » Qua Dez 05, 2012 12:28

vamos analisar o terceiro caso (6,2)

temso um total de 8 posições para as pedras pois 2+6=8

então para a primiera posição nos temos 8 possibilidades para a segunda 7 para a terceira 6 e assim sucessivamente ou seja

8!

mais a posição das 6 pedras quadras não importa ou seja para cada uma das combinações eu tenho 6! combinações que signigica a mesma coisa portanto

\frac{8!}{6!}

mais a posição das pedras retangulares tambem não importam ou seja para cada combinação eu tenho 2! combinações que quer dizer a mesma coisa então

\frac{8!}{6!.2!}

então isto vai dar o real valor da quantidade de combinações e isto é a mesma coisa que C_{6}^{8}=C_{2}^{8}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}