por Gustavo Gomes » Ter Dez 04, 2012 22:52
Olá, pessoal.
"Um engenheiro fará uma passarela de 10m de comprimento, ligando a porta da casa ao portão da rua. A passarela terá 1m de largura e ele, para revestí-la, dispõe de 10 pedras quadradas de lado 1m e 5 pedras retangulares de 1m x 2m.
Todas as pedras são da mesma cor, as pedras de mesmo tamanho são indistinguíveis uma das outras e o rejunte ficará aparente, embora com espessura desprezível. De quantas maneiras ele pode revestir a passarela?"
A resposta é 89 possibilidades.
De fato, para o revestimento podem ser combinadas pedras (1x1, 1x2), apenas nas seguintes quantidades: (10, 0), (8, 1), (6, 2), (4, 3), (2, 4) e (0, 5).
Para os casos (10, 0) e (0, 5) só existe uma forma de revestir a passarela em cada caso.
Já para os outros, estou com dificuldades em quantifivar as possíveis posições das pedras, sem contá-las exaustivamente.
Para o caso (8, 1), é fácil observar que são 9 possibilidades, alterando-se apenas a única pedra 2x1, mas para os demais.....
É sugerido utilizar combinações, de fato, para o caso (8, 1), 9 = C9,1. Aplicando esse processo nos demais casos, a resposta se verifica, mas não consegui entender o porque de se aplicar Combinação nesse contexto. Ou seja, como, no cenário contextualizado, as combinações das somas das pedras 1x1 e 1x2 utilizadas, tomadas n a n (n = nº de pedras 1x2 utilizadas em cada caso) resolvem o problema...
Aguardo. Grato.
-
Gustavo Gomes
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Out 05, 2012 22:05
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática-Licenciatura
- Andamento: formado
por young_jedi » Qua Dez 05, 2012 12:28
vamos analisar o terceiro caso (6,2)
temso um total de 8 posições para as pedras pois 2+6=8
então para a primiera posição nos temos 8 possibilidades para a segunda 7 para a terceira 6 e assim sucessivamente ou seja
8!
mais a posição das 6 pedras quadras não importa ou seja para cada uma das combinações eu tenho 6! combinações que signigica a mesma coisa portanto

mais a posição das pedras retangulares tambem não importam ou seja para cada combinação eu tenho 2! combinações que quer dizer a mesma coisa então

então isto vai dar o real valor da quantidade de combinações e isto é a mesma coisa que

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- consigo na lógica mas na prática ta dificll
por Negte » Qui Fev 06, 2014 17:50
- 2 Respostas
- 1730 Exibições
- Última mensagem por Negte

Qui Fev 06, 2014 18:30
Álgebra Elementar
-
- [Sistemas Matriciais] Atividade Prática
por 13_two » Dom Mai 11, 2014 16:50
- 0 Respostas
- 1364 Exibições
- Última mensagem por 13_two

Dom Mai 11, 2014 16:50
Álgebra Linear
-
- [Dúvida Prática Equações] por favor alguem me responda logo.
por ArthurMoreira » Ter Fev 12, 2013 15:52
- 3 Respostas
- 1377 Exibições
- Última mensagem por DanielFerreira

Ter Fev 12, 2013 17:28
Equações
-
- Combinações
por Leone de Paula » Seg Mai 21, 2012 17:49
- 1 Respostas
- 2083 Exibições
- Última mensagem por DanielFerreira

Ter Mai 22, 2012 23:42
Estatística
-
- Combinações
por Leone de Paula » Ter Mai 22, 2012 00:03
- 0 Respostas
- 1083 Exibições
- Última mensagem por Leone de Paula

Ter Mai 22, 2012 00:03
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.