• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parábola

Parábola

Mensagempor manuel_pato1 » Qui Nov 29, 2012 21:12

Encontrar uma equação da parábola e suas interseções com os eixos coordenados, sendo dados:
a) F(0,0) eixo y=0 e passa por A(3,4)
b) F(0,-1) eixo x=0 e passa por A(4,2)

Então , não entendi muito bem o que fazer nesse exercício.
como o eixo é y= 0 , a parábola é do tipo, y² = 2px , correto?

sendo assim, 4²=2p3 -> p/2= 2/3 então , V(-2/3, 0) ??

mas eu não sei chegar na equação, pois 2p= 8/3

tentei colocar na fórmula: y²= 8/3*(x+2/3)
mas o resultado não chega nem perto do correto

Resposta: a) y² -4x -4=0, (-1,0) , (0,+-2)
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Parábola

Mensagempor LuizAquino » Sex Nov 30, 2012 10:32

manuel_pato1 escreveu:Encontrar uma equação da parábola e suas interseções com os eixos coordenados, sendo dados:
a) F(0,0) eixo y=0 e passa por A(3,4)

(...)

Então , não entendi muito bem o que fazer nesse exercício.
como o eixo é y= 0 , a parábola é do tipo, y² = 2px , correto?


Pense um pouco: se o foco é em (0, 0), então o vértice não pode ser em (0, 0). Sendo assim, como pode a equação ser esta que você escreveu, na qual o vértice seria em (0, 0)?

Na verdade, como o eixo é y = 0 e o vértice não está em (0, 0), então ele está em (x_v,\,0), com x_v um número diferente de zero. Sendo assim, a equação será do tipo y^2 = 2p(x - x_v) ou y^2 = -2p(x - x_v) (dependendo da concavidade da parábola).

Precisamos então descobrir o valor de p e de x_v .

No exercício foram fornecidos o foco F = (0, 0) e o ponto A = (3, 4). Por outro lado, sabemos que qualquer ponto de uma parábola é tal que sua distância até o foco é igual a sua distância até a reta diretriz.

Calculando a distância de A até F, obtemos:

d(A,\,F) = \sqrt{(0 - 3)^2 + (0 - 4)^2} = 5

Sendo assim, a distância de A até a reta diretriz deve ser 5. Lembrando que o eixo é y = 0, temos que a reta diretriz será do tipo x = k (ou ainda, x - k = 0). Desse modo, temos que:

d(A,\,r) = 5 \implies \dfrac{|3 - k|}{\sqrt{1^2 + 0^2}} = 5 \implies k = -2 \textrm{ ou } k = 8

Podemos ter então duas possibilidades para a reta diretriz: (i) x = -2; (ii) x = 8. (Note que isso significa que na verdade o exercício terá duas respostas corretas.)

Possibilidade (i)

Considerando que a reta diretriz seja x = -2, temos que a distância do foco F = (0, 0) até essa reta será 2. Sendo assim, teremos que p = 2. Disso concluímos que o vértice será V=(-1, 0). Além disso, teremos que a concavidade da parábola está voltada para a direita.

Portanto, a equação da parábola será dada por:

y^2 = 2\cdot 2\cdot [x - (-1)]\implies y^2 - 4x - 4 = 0

Para determinar a interseção dessa parábola com o eixo x, basta substituir y = 0 na sua equação. Obtemos então o ponto (-1, 0).

Já para determinar a interseção dessa parábola com o eixo y, basta substituir x = 0 na sua equação. Obtemos então os pontos (0, -2) e (0, 2).

Possibilidade (ii)

Considerando que a reta diretriz seja x = 8, temos que a distância do foco F = (0, 0) até essa reta será 8. Sendo assim, teremos que p = 8. Disso concluímos que o vértice será V=(4, 0). Além disso, teremos que a concavidade da parábola está voltada para a esquerda.

Portanto, a equação da parábola será dada por:

y^2 = -2\cdot 8 \cdot (x - 4)\implies y^2 + 16x - 64 = 0

Para determinar a interseção dessa parábola com o eixo x, basta substituir y = 0 na sua equação. Obtemos então o ponto (4, 0).

Já para determinar a interseção dessa parábola com o eixo y, basta substituir x = 0 na sua equação. Obtemos então os pontos (0, -8) e (0, 8).

manuel_pato1 escreveu:b) F(0,-1) eixo x=0 e passa por A(4,2)


Tente resolver esse item considerando o procedimento utilizado para o item anterior. Note que nesse caso a equação da parábola será do tipo x^2 = 2p(y - y_v) ou x^2 = -2p(y - y_v) (dependendo da concavidade da parábola).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Parábola

Mensagempor manuel_pato1 » Qua Dez 05, 2012 11:40

Sendo assim, a distância de A até a reta diretriz deve ser 5. Lembrando que o eixo é y = 0, temos que a reta diretriz será do tipo x = k (ou ainda, x - k = 0). Desse modo, temos que:

d(A,\,r) = 5 \implies \dfrac{|3 - k|}{\sqrt{1^2 + 0^2}} = 5 \implies k = -2 \textrm{ ou } k = 8

Podemos ter então duas possibilidades para a reta diretriz: (i) x = -2; (ii) x = 8. (Note que isso significa que na verdade o exercício terá duas respostas corretas.)


Muito obrigado pela resposta ,cara. Então , meu professor não aceita que distancia de reta a ponto seja feita na fórmula.
Ele pede que façamos através de ponto a ponto.

Aí veio minha dúvida: Qual seria o ponto da diretriz que eu posso fazer D(d,A) ? Eu fiz com o ponto (k,0)

que ficou 5=\sqrt[2]{(k-3)^2 + (0-4)^2}

aí eu elevei os dois lados ao quadrado, porém ficou k² - 6k +25 - 25 = 0

mas aí o k resultou em 6 e 0 ...

Se não for pedir muito, teria como tu me dar uma mão? abraço
manuel_pato1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Ter Set 18, 2012 22:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Parábola

Mensagempor LuizAquino » Qua Dez 05, 2012 14:41

manuel_pato1 escreveu:Sendo assim, a distância de A até a reta diretriz deve ser 5. Lembrando que o eixo é y = 0, temos que a reta diretriz será do tipo x = k (ou ainda, x - k = 0). Desse modo, temos que:

d(A,\,r) = 5 \implies \dfrac{|3 - k|}{\sqrt{1^2 + 0^2}} = 5 \implies k = -2 \textrm{ ou } k = 8

Podemos ter então duas possibilidades para a reta diretriz: (i) x = -2; (ii) x = 8. (Note que isso significa que na verdade o exercício terá duas respostas corretas.)


Muito obrigado pela resposta ,cara. Então , meu professor não aceita que distancia de reta a ponto seja feita na fórmula.
Ele pede que façamos através de ponto a ponto.

Aí veio minha dúvida: Qual seria o ponto da diretriz que eu posso fazer D(d,A) ? Eu fiz com o ponto (k,0)

que ficou 5=\sqrt[2]{(k-3)^2 + (0-4)^2}

aí eu elevei os dois lados ao quadrado, porém ficou k² - 6k +25 - 25 = 0

mas aí o k resultou em 6 e 0 ...

Se não for pedir muito, teria como tu me dar uma mão? abraço


Pense um pouco: você sabe que uma reta do tipo x = k é paralela ao eixo y. Desse modo, a distância entre o ponto A = (3, 4) e essa reta, será correspondente a distância entre A e o ponto P = (k, 4) (faça um esboço no plano cartesiano para entender melhor).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Parábola

Mensagempor renan_a » Qua Dez 05, 2012 16:29

Pô, brigadão cara, não estava prestando atenção.

Aliás, consegui fazer a letra B também depois da tua dica.

Abraço
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D