• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PARES ORDENADOS + RETA NUMÉRICA + EQUAÇÃO

PARES ORDENADOS + RETA NUMÉRICA + EQUAÇÃO

Mensagempor Myllena » Dom Dez 02, 2012 02:51

Se você traçar a reta que contém os pares ordenados que são soluções de x + y = 2 e a reta que contém os pares ordenados que são soluções de x + y = 4 , em um mesmo gráfico , qual desses pares ordenados será o ponto do cruzamento das duas retas: (3, 1) , (3, -1) , ou (4, 0) ? em seguida construa o gráfico para confirmar sua resposta .

obs : (fiquei o bimestre todo sem nenhum professor só chegou uma diretora lá e falou pra gente fazer um trabalho em vez da prova e eu não estou intendendo NADA !) e eu preciso muito de tirar 100 , me ajuuuuuda !! vou ter infarte ..

Tem que fazer a conta e
Myllena
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Dez 02, 2012 02:34
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Escola
Andamento: cursando

Re: PARES ORDENADOS + RETA NUMÉRICA + EQUAÇÃO

Mensagempor DanielFerreira » Dom Dez 02, 2012 18:24

Olá Myllena,
seja bem-vinda!
Um par ordenado é representador por (x, y), onde o x recebe o nome de Abscissa e o y o nome de ordenada.
O ponto de cruzamento entre as equações é um ponto, certo?! Esse ponto é comum as duas equações, ou seja, o ponto que passa pela equação x + y = 2 passa também por x + y = 4. Enfim, você deverá testar os pontos que foram dados e verificar qual deles é o procurado.



Vou tentar o primeiro ponto e você verifica os outros dois, ok?!

(x, y) = (3, 1)
Isso significa que \boxed{x = 3} e \boxed{y = 1}

Testando na equação x + y = 4, veja:
x + y = 4
3 + 1 = 4
4 = 4 É VERDADEIRA!!!!


Testando na equação x + y = 2, veja:
x + y = 2
3 + 1 = 2
4 = 2 É FALSA!!!!

Para que esse ponto fosse a resposta, teria que ser verdadeira nas duas equações, lembre-se disso. Então, podemos concluir que esse ponto não é o que procuramos.

Agora é com você.

Até breve!!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59